6344
K.-T. Wong et al. / Tetrahedron Letters 42 (2001) 6341–6344
Thermal stability of 5a, 5b, 7a, 7b and 12 was investi-
gated by TGA. No decomposition was observed below
300°C, and the decomposition temperatures (Td) are
summarized in Table 2. The TG thermograms reveal
that complete weight loss occurs before 500°C, which
corresponds to the removal of the alkyl or alkoxy side
chains. The residue is stable without any further
decomposition up to 800°C. The high thermal stability
of the residue could be attributed to the thermal cross-
linking of the conjugated backbone.
Soc. 2000, 122, 7195–7201; (c) Fernandez-Acebes, A.;
Lehn, J.-M. Chem. Eur. J. 1999, 5, 3285–3292.
4. Khatyr, A.; Ziessel, R. J. Org. Chem. 2000, 65, 7814–7824.
5. Harriman, A.; Ziessel, R. Chem. Commun. 1996, 1707–
1716.
6. (a) Gammper, R.; Mari, H.-J.; Polborn, K. Synthesis 1997,
696–718; (b) Kanbara, T.; Kushida, T.; Saito, N.; Kuwa-
jima, I.; Kubota, K.; Yamamoto, T. Chem. Lett. 1992,
583–586.
7. Goodby, J. W.; Hird, M. H.; Lewis, R. A.; Toyne, K. J.
Chem. Commun. 1996, 2719–2720.
In summary, we have established an efficient pathway
for introducing the highly electronegative pyrimidine
moiety into a p-conjugated backbone affording a new
class of linear molecules. Control on the dipolar orien-
tation of pyrimidine in the conjugated backbone was
accomplished by taking advantage of the different reac-
tivities at the C2 and C5 position of 1. However, the
photophysical studies indicate that the difference in the
arrangement of the pyrimidine moiety in the p-conju-
gated system has a slight influence on their properties.
8. Wong, K.-T.; Hsu, C. C. Org. Lett. 2001, 3, 173–175.
9. Malm, J.; Bjo¨rk, P.; Gronowitz, S.; Ho¨rnfeldt, A.-B.
Tetrahedron Lett. 1992, 33, 2199–2202.
10. An improved procedure for Sonagashira coupling: Tho-
rand, S.; Krause, N. J. Org. Chem. 1998, 63, 855–8553.
11. New compounds were characterized by spectroscopic tech-
niques. Selected data: Compound 3: 1H NMR (CDCl3, 400
MHz) l 8.83 (s, 2H), 8.35 (d, J=8.8 Hz, 2H), 7.51 (d,
J=8.8 Hz, 2H), 0.27 (s, 9H), Anal. calcd for C15H15BrN2Si:
C, 54.38; H, 4.56; N, 8.46, found: C, 54.23; H, 4.65; N, 8.41.
Compound 5a: 1H NMR (CDCl3, 400 MHz) l 8.90 (s, 4H),
8.42 (d, J=7.4 Hz, 4H), 7.60 (d, J=7.4 Hz, 4H), 7.43 (s,
2H), 2.83 (t, J=7.6 Hz, 4H), 1.52–1.55 (m, 4H), 1.29–1.33
(m, 20H), 0.87–0.89 (m, 6H), 0.28 (s, 9H); Anal. calcd for
C56H66N4Si2: C, 79.01; H, 7.81; N, 6.58, found: C, 78.90;
Acknowledgements
1
This work was supported by the National Science
Council of Taiwan (NSC-88-2113-M002-036, NSC-89-
2113-M002-008). We thank Professor Hsiu-Fu Hsu and
Dr. Jo¨rn Wirsching for their suggestive discussion on
the preparation of the manuscript.
H, 7.68; N, 6.63. Compound 5b: H NMR (CDCl3, 400
MHz) l 8.90 (s, 4H), 8.40 (d, J=8 Hz, 4H), 7.60 (d, J=8
Hz, 4H), 7.06 (s, 2H), 4.06 (t, J=6.6 Hz, 4H), 1.92–1.95
(m, 4H), 1.29–1.33 (m, 20H), 0.87–0.90 (m, 6H), 0.28 (s,
9H); Anal. calcd for C56H66N4O2Si2: C, 76.14; H, 7.53; N,
6.34, found: C, 75.93; H, 7.55; N, 6.38. Compound 7a: l
8.97 (s, 4H), 7.62 (d, J=8.6 Hz, 4H), 7.57 (d, J=8.6 Hz,
4H), 7.57 (s, 2H), 2.91 (t, J=7.5 Hz, 4H), 1.73 (m, 4H),
1.25–1.41 (m, 20H), 0.84–0.87 (m, 6H), 0.28 (s, 9H); Anal.
calcd for C56H66N4Si2: C, 79.01; H, 7.81; N, 6.58, found:
C, 79.30; H, 7.98; N, 6.53. Compound 7b: 1H NMR
(CDCl3, 400 MHz) l 8.95 (s, 4H), 7.61 (d, J=6.5 Hz, 4H),
7.56 (d, J=6.5 Hz, 4H), 7.17 (s, 2H), 4.04 (t, J=6.7 Hz,
4H), 1.84–1.88 (m, 4H), 1.26–1.35 (m, 20H), 0.87–0.87 (m,
6H), 0.27 (s, 9H); Anal. calcd for C56H66N4O2Si2: C, 76.14;
H, 7.53; N, 6.34, found: C, 76.03; H, 7.65; N, 6.48.
Compound 12: 1H NMR (CDCl3, 400 MHz) l 8.90 (s, 4H),
8.46 (d, J=8.0 Hz, 4H), 7.67 (d, J=8.0 Hz, 4H), 7.52 (d,
J=8.4 Hz, 4H), 7.42 (d, J=8.4 Hz, 4H), 7.05 (s, 2H), 4.07
(t, J=6.2 Hz, 4H), 1.92–1.95 (m, 4H), 1.29–1.33 (m, 20H),
0.87–0.90 (m, 6H); Anal. calcd for C70H74N4O2: C, 83.79;
H, 7.43; N, 5.58, found: C, 83.67; H, 7.25; N, 5.33.
References
1. (a) Petty, M. C.; Bryce, M. R.; Bllor, D. Introduction to
Molecular Electronics; Edward Arnold, 1995; (b) Tour, J.
M. Acc. Chem. Res. 2000, 33, 791–804.
2. (a) Wong, K.-T.; Lehn, J.-M.; Peng, S.-M.; Lee, G.-H.
Chem. Commun. 2000, 2259–2260; (b) Jones, N. D.; Wolf,
M. O. Organometallics 1997, 16, 1352–1354; (c) Collbert,
M. C. B.; Lewis, J.; Long, N. J.; Raithby, P. R.; White,
A. J. P.; Williams, D. J. J. Chem. Soc., Dalton Trans. 1997,
99–104; (d) Lebreton, C.; Touchard, D.; Pichon, L. L.;
Dairdor, A.; Toupet, L.; Dixneuf, P. H. Inorg. Chim. Acta
1998, 272, 188–196.
3. (a) Marsella, M. J.; Wang, Z.-Q.; Mitchell, R. H. Org. Lett.
2000, 2, 2979–2982; (b) Matsuda, K.; Irie, M. J. Am. Chem.
.