418
Organometallics 2001, 20, 418-423
Liga n d -P r otected Str a in -F r ee Dia r ylger m ylen es†
Gerald L. Wegner, Raphael J . F. Berger, Annette Schier, and
Hubert Schmidbaur*
Anorganisch-chemisches Institut, Technische Universita¨t Mu¨nchen, Lichtenbergstrasse 4,
D-85747 Garching, Germany
Received August 24, 2000
Reaction of 2 molar equiv of 2,6-di(1′-naphthyl)phenyllithium with bis[bis(trimethylsilyl)-
amino]germylene afforded the red, crystalline, stable bis[2,6-bis(1-naphthyl)phenyl]germylene
[(bisap)2Ge, 6] in good yield. The structure of the solvate 6‚C6H6 was determined by single-
crystal X-ray methods. The molecule features a largely strain-free conformation with a
C-Ge-C angle of 102.72(9)° and Ge-C distances of 2.036(2) and 2.030(2) Å. These
parameters are very close to those calculated for the diphenylgermylene prototype by ab
initio methods [101.6°; 2.006 Å]. The two new wing-like 2,6-di(1-naphthyl)phenyl substituents
appear to protect the germylene center of 6 in a very efficient way without inducing
destabilizing distortions. Bis[2,4,6-triphenylphenyl]germylene [(triph)2Ge, 1] was also
prepared. Germylenes 1 and 6 were oxidized to yellow products of the composition (triph)2GeO
(2) and (bisap)2GeO (7), respectively. The compounds have been characterized by their mass
spectra, which show the parent ions in full accordance with the proposed formulas.
In tr od u ction
pound was found to be a monomer only in the gas phase
and in solution,8 but forms a dimer in the solid state.9
Further increase of the steric crowding by using one tris-
(trimethylsilyl)methyl group finally afforded a stable
germylene, [(Me3Si)3C]Ge[CH(SiMe3)2], which is mon-
omeric in all three states of aggregation.4a
There is currently widespread interest in the chem-
istry of carbenes CR2 and their heavy-atom homologues,
the silylenes SiR2 and germylenes GeR2, stannylenes
SnR2, and plumbylenes PbR2. Recent reviews1 reflect
the advances in these topical areas of research. In the
context of our studies of the preparation and reactivity
of germanium hydrides2a,d-f and low-valent germanium
compounds2b,c we became interested in stable diorgano-
germylenes R2Ge as substrates for oxidation, addition,
and insertion reactions.
A literature search revealed that only very few
diorganogermylenes have been isolated and structurally
characterized.3-7 The first stable dialkylgermylene R2-
Ge reported in 1976 appears to be bis[bis(trimethylsilyl)-
methyl]germanium,3 [(Me3Si)2CH]2Ge, but this com-
Three stable diarylgermylenes Ar2Ge were isolated
with Ar ) 2,4,6-(CF3)3C6H2; 2,4,6-(Me3C)3C6H2; 2,6-
(2,4,6-Me3C6H2)2C6H3. According to the crystal structure
analysis, the tris(trifluoromethyl)phenyl compound fea-
tures an intramolecular stabilization through short
F-Ge contacts.5 In the tris(tert-butyl)phenyl (“super-
mesityl”) compound there is structural evidence for
considerable strain.6 The two aryl groups are inequiva-
lent (C-Ge-C 108°) and show significant distortions
of the aryl rings. This leads to considerable instability
and to facile intramolecular insertion of the germylene
unit into one of the C-H bonds. Similar strain is
discernible in the 2,6-bis(mesityl)phenyl compound,
where the C-Ge-C angle is widened to 114°, the largest
value detected in diorganogermylenes, to allow phenyl
stacking.7 An unsymmetrical diarylgermylene with
2,4,6-tris(trimethylsilyl)phenyl and 2,4,6-tri(isopropyl)-
phenyl groups was also prepared, but its structure is
unknown.10
† Dedicated to Professor Herbert Schumann on the occasion of his
65th birthday.
(1) (a) Neumann, W. P. Chem. Rev. 1991, 91, 311. (b) Weidenbruch,
M. Eur. J . Inorg. Chem. 1999, 373.
(2) (a) Riedmiller, F.; Wegner, G. L.; J ockisch, A.; Schmidbaur, H.
Organometallics 1999, 18, 4317. (b) Wegner, G. L.; J ockisch, A.;
Schmidbaur, H. Z. Naturforsch. 1998, 53b, 438. (c) Tripathi, U. M.;
Wegner, G. L.; Schier, A.; J ockisch, A.; Schmidbaur, H. Z. Naturforsch.
1998, 53b, 939. (d) Schmidbaur, H.; Rott, J . Z. Naturforsch. 1980, 45b,
961. (e) Schmidbaur, H.; Rott, J .; Z. Naturforsch. 1979, 44b, 285. (f)
Schmidbaur, H.; Rott, J .; Reber, G.; Mu¨ller, G. Z. Naturforsch. 1988,
43b, 727.
(3) (a) Goldberg, D. E.; Harris, D. H.; Lappert, M. F.; Thomas, K.
M. J . Chem. Soc. Chem. Commun. 1976, 261. (b) Davidson, P. J .;
Harris, D. H.; Lappert, M. F. J . Chem. Soc., Dalton Trans. 1976, 2268.
(4) (a) J utzi, P.; Becker, A.; Stammler, H. G.; Neumann, B. Orga-
nometallics 1991, 10, 1647. (b) J utzi, P.; Becker, A.; Leue, C.; Stammler,
H. G. Neumann, B.; Hursthouse, M. B.; Karanlov, A. Organometallics
1991, 10, 3742.
(8) (a) Cowley, A. H.; Hull, S. W.; Nunn, C. M.; Power, J . M. J . Chem.
Soc., Chem. Commun. 1988, 753. (b) Lappert, M. F.; J . Power, P. P. J .
Chem. Soc., Dalton Trans. 1976, 2268. (c) Fjeldberg, T.; Haaland, A.;
Schilling, B. E. R.; Volden, H.; Lappert, M. F.; Thorne, A. J . J .
Organomet. Chem. 1985, 280, C43. (d) Fjeldberg, T.; Haaland, A.;
Schilling, B. E. R.; Lappert, M. F.; Thorne, A. J . J . Chem. Soc., Dalton
Trans. 1986, 1551.
(9) (a) Hitchcock, P. B.; Lappert, M. F.; Miles, S. J .; Thorne, A. J . J .
Chem. Soc., Chem. Commun. 1984, 481. (b) Goldberg, D. E.; Hitchcock,
P. B.; Lappert, M. F.; Thomas, K. M.; Thorne, A. J .; Fjeldberg, T.;
Haaland, A.; Schilling, B. E. R. J . Chem Soc., Dalton Trans. 1986, 2387.
(c) Trinquier, G.; Malrieu, J . P.; Rivie`re, P. J . Am. Chem. Soc. 1982,
104, 4529.
(5) Bender, J . E.; Holl, M. M. B.; Kampf, J . W. Organometallics 1997,
16, 6, 2743.
(6) (a) Lange, L.; Meyer, B.; du Mont, W.-W. J . Organomet. Chem.
1987, 329, C17. (b) J utzi, P.; Schmidt, H.; Neumann, B.; Stammler,
H.-G. Organometallics 1996, 15, 741.
(7) Simons, R. S.; Pu, L.; Olmstead, M. M.; Power, P. P. Organo-
metallics 1997, 116, 1920.
(10) Tokitoh, N.; Manmaru, K.; Okazaki, R. Organometallics 1994,
13, 167.
10.1021/om000743t CCC: $20.00 © 2001 American Chemical Society
Publication on Web 01/03/2001