A. Ponti and G. Molteni
[3] A. P. Kozikowsky, Acc. Chem. Res. 1984, 17, 410–416.
[4] D. P. Curran in Advances in Cycloadditions (Ed.: D. P. Curran), Jai
Press, Connecticut, 1988, pp. 129–189.
[5] V. Jäger, H. Grund, Angew. Chem. 1976, 88, 2 7;Angew. Chem. Int.
Ed. Engl. 1976, 15, 50.
[6] V. Jäger, I. Müller, T. Leitbold, M. Hein, M. Schwarz, M. Fengler, L.
Jaroskowa, M. Pätzel, P. Y. LeRoy, Bull. Soc. Chim. Belg. 1994, 103,
491.
[7] P. Grünanger, P. Vita-Finzi in Isoxazoles (Eds.: E. C. Taylor, A.
Weissberger), Wiley, New York, 1988.
[8] K. V. Gothelf, K. A. Jørgensen, Chem. Rev. 1998, 98, 863–910.
[9] K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 1952, 20, 72 2 –
725.
[10] K. N. Houk, J. Sims, C. R. Watts, L. J. Luskus, J. Am. Chem. Soc.
1973, 95, 7301–7315.
[11] L. T. Nguyen, F. De Proft, V. L. Dao, M. T. Nguyen, P. Geerlings, J.
Phys. Org. Chem. 2003, 16, 615–625.
and is not affected by the subsequent charge-reshuffling
step. As for possible structural peculiarities in the benzoni-
trile oxide case, we note that the B3LYP/6-31G* optimized
structures of the promoted complexes and transition states
for the 1,3-DC between ethene and several 1,3-dipoles[17]
(including HCNO, HCNNH, and HNNN) do not indicate
any anomaly in the HCNO case. We have to conclude that,
at present, we have no explanation for the peculiar slope ob-
served, but it seems that the details of the 1,3-DC reaction
path of (4-substituted)benzonitrile oxides to methyl propio-
late differ from those of N-(4-substituted)phenylnitrile
imines and (4-substituted)arylazides in that the substituent
effect on the transition-state energy is only 37% of that af-
fecting the promoted complex.
We have thus shown that the combined use of the DFT
reactivity indices of the reactants with the local HSAB prin-
ciple provides a quantitative rationalization of regioselectivi-
ty for a series of 1,3-DCs not amenable to FMO and elec-
tron-demand theory. No transition state has to be located
and characterized. Indeed, the electron demand of the sub-
stituent is an important feature, but it only affects the elec-
tron chemical potential m, which cannot fully account for re-
gioselectivity. The latter can only be adequately rationalized
when the substituent effect on the local variations of charge
density upon the reactive encounter is taken into account.
[12] R. G. Parr, W. Yang, Density Functional Theory of Atoms andMole-
cules, Oxford University Press, Oxford, 1989.
[13] H. Chermette, J. Comput. Chem. 1999, 20, 129–154.
[14] P. K. Chattaraj, H. Lee, R. G. Parr, J. Am. Chem. Soc. 1991, 113,
1855–1856.
[15] A. Toro-LabbØ, J. Phys. Chem. A 1999, 103, 4398–4403.
[16] J. L. Gazquez, J. Phys. Chem. A 1997, 101, 9464–9469.
[17] M. D. Su, H. L. Liao, W. S. Chung, S. Y. Chu, J. Org. Chem. 1999, 64,
6710–6716.
[18] V. Polo, J. Andres, R. Castillo, S. Berski, B. Silvi, Chem. Eur. J. 2004,
10, 5165–5172.
[19] A. Cedillo, P. K. Chattaraj, R. G. Parr, Int. J. Quantum Chem. 2000,
77, 403–407.
[20] R. G. Pearson, J. Am. Chem. Soc. 1963, 85, 3533–3539.
[21] R. G. Parr, W. Yang, J. Am. Chem. Soc. 1984, 106, 4049–4050.
[22] J. L. Gµzquez, F. MØndez, J. Phys. Chem. 1994, 98, 4591–4593.
[23] A. K. Chandra, M. T. Nguyen, J. Comput. Chem. 1998, 19, 195–202.
[24] A. K. Chandra, M. T. Nguyen, J. Phys. Chem. A 1998, 102, 6181–
6185.
[25] F. Mendez, J. Tamariz, P. Geerlings, J. Phys. Chem. A 1998, 102,
6292–6296.
[26] T. N. Le, L. T. Nguyen, A. K. Chandra, F. De Proft, P. Geerlings,
M. T. Nguyen, J. Chem. Soc. Perkin Trans. 2 1999, 1249–1255.
[27] A. K. Chandra, T. Uchimaru, M. T. Nguyen, J. Chem. Soc. Perkin
Trans. 2 1999, 2117–2121.
[28] P. Geerlings, F. De Proft, Int. J. Quantum Chem. 2000, 80, 227–235.
[29] L. T. Nguyen, F. De Proft, A. K. Chandra, T. Uchimaru, M. T.
Nguyen, P. Geerlings, J. Org. Chem. 2001, 66, 6096–6103.
[30] F. MØndez, M. Galvàn, A. Garritz, A. Vela, J. Gàzquez, THEO-
CHEM 1992, 277, 81–86.
[31] S. Damoun, G. Van de Woude, K. Choho, P. Geerlings, J. Phys.
Chem. A 1999, 103, 7861–7866.
[32] S. Pal, K. R. S. Chandrakumar, J. Am. Chem. Soc. 2000, 122, 4145–
4153.
[33] A. Ponti, J. Phys. Chem. A 2000, 104, 8843–8846.
[34] A. Ponti, G. Molteni, J. Org. Chem. 2001, 66, 5252–5255.
[35] G. Molteni, A. Ponti, M. Orlandi, New J. Chem. 2002, 26, 1340–
1345.
[36] A. Ponti, G. Molteni, New J. Chem. 2002, 26, 1346–1351.
[37] G. Molteni, A. Ponti, Chem. Eur. J. 2003, 9, 2770–2774.
[38] Y. Hu, K. N. Houk, Tetrahedron 2000, 56, 8239–8243.
[39] M. T. Nguyen, A. K. Chandra, S. Sakai, K. Morokuma, J. Org.
Chem. 1999, 64, 65–69.
Experimental Section
Cycloadditions between nitrile oxides 2 and methyl propiolate 3: Com-
pounds 4a–e and 5a–e are known in the literature.[36]
General procedure: A solution of 2 (5.0 mmol) and 3 (0.43 g, 5.0 mmol)
in dry carbon tetrachloride (25 mL) was refluxed for 20 h. Evaporation
of the solvent in vacuo gave a residue, which was separated by chroma-
tography on a silica-gel column with EtOAc/hexane 3:7. The major prod-
uct, 4-methoxycarbonylisoxazole
4 was eluted first, followed by the
minor product, 5-methoxycarbonylisoxazole 5. Crystallization from diiso-
propyl ether gave analytically pure 4 and 5.
Computational methods: DFT calculations were performed with the
Gaussian98[48] program suite by means of a Beowulf PC cluster. The
hybrid B3LYP functional was employed with the standard 6–311+G(d,p)
basis set. The in-vacuo geometry of 2a–e and 3 was fully optimized and
characterized with vibrational analysis at the same level of theory. The
anion and cation of 2a–e and 3 were treated at the UB3LYP level by
using the geometry of the neutral systems. Atomic electron populations
were evaluated by the CHelp electrostatic scheme[49] (including fitting of
atom-centered dipoles), which has already proved to be
a reliable
method.[50] Reactivity indices were computed within the finite difference
approximation:[12] m=À(I+A)/2and S=(IÀA)À1 in which I and A are the
(vertical) ionization potential and electron affinity, respectively. The local
softness s (condensed to each individual atom[51]) was computed as s+
=
S[p(N0+1)Àp(N0)] for electrophiles, and as sÀ =S[p(N0)Àp(N0À1)] for
nucleophiles in which p(N), N=N0À1, N0, and N0 +1 represent the
atomic electron population of the cationic, neutral, and anionic system,
respectively.
[40] A. Rastelli, R. Gandolfi, M. S. Amad, J. Org. Chem. 1998, 63,
7425–7436.
[41] M. Christl, R. Huisgen, Chem. Ber. 1973, 106, 3345.
[42] M. B. Smith, J. March, Marchꢀs Advanced Organic Chemistry: Reac-
tions, Mechanisms, andStructures , Wiley, 1999.
[43] S. Sakai, M. T. Nguyen, J. Phys. Chem. A 2004, 108, 9169–9179.
[44] M. T. Nguyen, A. K. Chandra, T. Uchimaru, S. Sakai, J. Phys. Chem.
A 2001, 105, 10943–10945.
[1] A. Quilico, R. Fusco, Rend. R. Ist. Lomb. Sci. Lett. 1936, 69, 439.
[2] V. Jäger, P. A. Colinas in Synthetic Applications of 1,3-Dipolar Cy-
cloaddition Chemistry toward Heterocycles and Natural Products
(Eds.: A. Padwa, W. H. Pearson), Wiley, New York, 2002, pp. 361–
472.
1160
ꢁ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2006, 12, 1156 – 1161