S. Mondal et al. / Inorganica Chimica Acta 398 (2013) 98–105
105
ible reductive response at ꢁ0.8 V (Supplementary Figs. S1 and S2).
The mononuclear complexes show a ligand based irreversible oxi-
dation at 0.9–1.2 V, for the binuclear complexes a similar irrevers-
ible oxidative response at 1.03–1.08 V region were observed. On
the negative side of Ag/AgCl electrode, the mononuclear complexes
show a quasi-reversible/irreversible response at ꢁ0.5 to ꢁ0.9 V,
which sometimes (e.g. for 3 and 4) resolves into two overlapping
peaks (Figs. 5 and 6 and Supplementary Figs. S3–S5). We tenta-
tary data associated with this article can be found, in the online
References
[1] E. Tsuchida, K. Oyaizu, Coord. Chem. Rev. 237 (2003) 213.
[2] L. Canali, D.C. Sherrington, Chem. Soc. Rev. 28 (1999) 85.
[3] J. Tisato, F. Refosco, F. Bandoli, Coord. Chem. Rev. 135 (1994) 325.
[4] J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995. p113.
[5] R.E.P. Winpenny, Chem. Soc. Rev. (1998) 447.
[6] M.S. Shongwe, S.H. Al-Rahbi, M.A. Al-Azani, A.A. Al-Muharbi, F. Al-Mjeni, D.
Matoga, A. Gismelseed, I.A. Al-Omari, A. Yousif, H. Adams, M.J. Morris, M.
Mikuriya, A. Gismelseed, I.A. Al-Omari, A. Yousif, H. Adams, M.J. Morris, M.
Mikuriya, Dalton Trans. (2012) 2500–2514.
[7] P. Krsihnamoorthy, P. Sthyadevi, K. Senthilkumar, P.T. Muthiah, R. Ramesh, N.
Dharmaraj, Inorg. Chem. Commun. 14 (2011) 1318–1322.
[8] Q. Yu, L.G. Zhu, H.D. Bian, J.H. Deng, X.G. Bao, H. Liang, Inorg. Chem. Commun.
10 (2007) 437.
[9] W.X. Ni, M. Li, S.Z. Zhan, J.Z. Hou, D. Li, Inorg. Chem. 48 (2009) 1483.
[10] S. Naskar, D. Mishra, S.K. Chattopadhyay, M. Corbella, A.J. Blake, Dalton Trans.
12 (2005) 2428–2435.
tively assign the response at ꢁ0.5 to ꢁ0.9 V to overlapping Cu2+
/
Cu+ and a ligand based reduction processes [30,36,39,40]. Two
more reductive waves at ꢁ1.3 to ꢁ1.5 V and ꢁ1.8 to ꢁ2.0 V (Figs. 5
and 6 and Supplementary Figs. S3–S5) are assigned to ligand based
reductions [15]. For the binuclear complexes, there are often two
irreversible/quasi-reversible reductions at ꢁ0.2 to ꢁ0.4 V and
ꢁ0.5 to ꢁ0.8 V (Fig. 7 and Supplementary Figs. S7–S11). The first
reduction is assigned to Cu2+/Cu+ couple [30,41], while the reduc-
tive response at more negative potential is due to combined ligand
centered and a second metal centered reductions.
[11] S. Naskar, M. Corbella, A.J. Blake, S.K. Chattopadhyay, Dalton Trans. (2007)
1150.
[12] S. Naskar, D. Mishra, R.J. Butcher, S.K. Chattopadhyay, Polyhedron 26 (2007)
3703.
[13] M. Prabhakar, P.S. Zacharias, S.K. Das, Inorg. Chem. 44 (2005) 2585.
[14] Z. He, C. He, E.-Q. Gao, Z.-M. Wang, X.-F. Yang, C.-S. Liao, C.-H. Yan, Inorg.
Chem. 42 (2003) 2206.
4. Conclusions
The tridentate aroyl hydrazone ligands reported here, obtained
by condensation of pyridine-2-carbaldehyde and 2-acetyl pyridine
with four aroyl hydrazides, were found to form mononuclear octa-
hedral or dichloro bridged binuclear Cu(II) complexes with square
pyramidal geometry. It is found that aroyl hydrazones of pyridine-
2-aldehyde and 2-acetyl pyridine have very similar reducing
power and it is probably the kinetic factor that is responsible for
only the later being able to reduce perchlorate to chloride at ambi-
ent conditions. Presence of excess ligand in the reaction medium
always leads to bis-(hydrazone)Cu(II) complex, in spite of the fact
that the mononuclear octahedral complexes are thermodynami-
cally much less stable than the binuclear complexes. Thus the for-
mation of binuclear complexes with 2-acetylpyridine aroyl
hydrazone ligands on reaction with Cu(ClO4)2ꢀ6H2O in 2:1 M ratio
is due to ligand deficiency in the reaction medium, caused by par-
tial oxidative degradation of the ligands by perchlorate.
[15] S. Naskar, S. Biswas, D. Mishra, B. Adhikary, L.R. Falvello, T. Soler, C.H.
Schwalbe, S.K. Chattopadhyay, Inorg. Chim. Acta 357 (2004) 4257.
[16] D. Mishra, S. Naskar, A.J. Blake, S.K. Chattopadhyay, Inorg. Chim. Acta 360
(2007) 2291.
[17] C.M. Armstrong, P.V. Bernhardt, P. Chin, D.R. Richardson, Eur. J. Inorg. Chem.
(2003) 1145.
[18] Y.X. Ma, Z.Q. Ma, G. Zhao, Y. Ma, M. Yan, Polyhedron 8 (1989) 2105.
[19] R.K. Agarwal, R.K. Sarin, R. Prasad, Pol. J. Chem. 67 (1993) 1947.
[20] M. Carcelli, C. Pelizzi, G. Pelizzi, P. Mazza, F. Zani, J. Organomet. Chem. 488
(1995) 55.
[21] Z.Y. Yang, R.D. Yang, K.B. Yu, Polyhedron 15 (1996) 3749.
[22] A.A.R. Despaigne, L.F. Vieira, I.C. Mendes, F.B. da Costa, N.L. Speziali, H. Beraldo,
J. Braz. Chem. Soc. (2010) 1247–1257.
[23] D. Demertzi, D. Nicholls, Inorg. Chim. Acta 73 (1983) 37.
[24] P. Pelagatti, M. Carcelli, C. Pelizzi, M. Costa, Inorg. Chim. Acta 342 (2003) 323.
[25] J. Patole, U. Sandbhor, S. Padhye, D.N. Deobagkar, C.E. Anson, A. Powell, Bioorg.
Med. Chem. Lett. 13 (2003) 51–55.
[26] G.M. Sheldrick, Acta Crystallogr. Sect. A 64 (2008) 112–122.
[27] N.N. Greenwood, A.E. Earnshaw, Chemistry of the Elements, second ed.,
Butterworth-Heinnemann, Oxford, 2005, p. 868.
[28] Hyperchem for Windows, Release 7.01, Hypercube Inc., 115 NW, 4th Street,
Gainesville, FL 32601.
[29] S. Pal, J. Pushparaju, N.R. Sangeetha, S. Pal, Transition Met. Chem. 25 (2000)
529.
Acknowledgments
[30] N.R. Sangeetha, S. Pal, Polyhedron 19 (2000) 1593.
[31] D.B. Dang, Y. Bai, C.Y. Duan, Acta Crystallogr., Sect. E 62 (2006) m1567.
[32] Y.J. Jang, U.K. Lee, B.K. Koo, Bull. Korean Chem. Soc. 26 (2005) 925.
[33] P.S.J. Sastry, T.R. Rao, Proc. Indian. Acad. Sci. (Chem. Sci.) 107 (1995) 25–33.
[34] S. Banerjee, S. Mondal, W. Chakraborty, S. Sen, R. Gachhui, R.J. Butcher, A.M.Z.
Slawin, C. Mandal, S. Mitra, Polyhedron 28 (2009) 2785–2793.
[35] P. Domiano, A. Musatti, M. Nardelli, C. Pelizzi, G. Predieri, J. Chem. Soc., Dalton
Trans. (1979) 1266–1269.
Satayajit Mondal thanks CSIR for a NET JRF. S.K.C. acknowledges
AICTE for funding the purchase of CH1120A potentiostat. Infra-
structural facility created in our department through DST-FIST,
UGC-SAP and MHRD special grants are also thankfully acknowl-
edged. Steven R. Herron gratefully acknowledges the use of the
X-ray facility at Brigham Young University for determining the X-
ray crystal structure of 5.
[36] B. Samanta, J. Chakraborty, S. Shit, S.R. Batten, P. Jensen, J.D. Masuda, S. Mitra,
Inorg. Chim. Acta 360 (2007) 2471–2484.
[37] A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn, G.C. Verschoor, J. Chem. Soc.,
Dalton Trans. (1984) 1349–1356.
[38] P. Domiano, A. Musatti, M. Nardelli, C. Pelizzi, G. Predieri, J. Chem. Soc., Dalton
Trans. (1975) 2357–2360.
Appendix A. Supplementary material
[39] Z. Lu, W. Xiao, B.S. Kang, C.Y. Su, J. Liu, J. Mol. Struct. 523 (2000) 133.
[40] D. Matoga, J. Szklarzewicz, W. Nitek, Polyhedron 36 (2012) 120.
[41] S. Shit, S.K. Dey, C. Rizzoli, E. Zangrando, G. Pilet, C.J.G. Garcia, S. Mitra, Inorg.
Chim. Acta 370 (2011) 18–26.
CCDC 870577 and 870578 contain the supplementary crystallo-
graphic data for compounds 5 and 1, respectively. These data can
be obtained free of charge from The Cambridge Crystallographic