Charge Separation in a Photosynthetic Reaction Center
J. Am. Chem. Soc., Vol. 123, No. 27, 2001 6619
The important synthetic intermediate 3 was prepared by
condensation of dipyrromethane 127 with 3,5-di-tert-butylben-
zaldehyde28 in the presence of BF3OEt2, followed by reduction
of the nitro group in 2. Condensation of phenylferrocene acid
chloride29 with diaminoporphyrin 3, followed by treatment with
zinc acetate, gave ferrocene-zincporphyrin 4 in 43% yield.
Cross-condensation of porphyrin bis(acid chloride) 522e with 4
and 4-tert-butyldimethylsilyloxymethylaniline22e in benzene,
followed by deprotection of the tert-butyldimethylsilyl group
with n-Bu4NF, afforded ferrocene-zincporphyrin-freebase-
porphyrin 6 in 41% yield. The triad 6 was then converted to
the Fc-ZnP-H2P-C60 tetrad using oxidation with MnO2 and
subsequent 1,3-dipolar cycloaddition30 of 7 with C60 and
N-methylglycine in 45% yield (two steps).
(19) (a) Thomas, K. G.; Biju, V.; Guldi, D. M.; Kamat, P. V.; George,
M. V. J. Phys. Chem. B 1999, 103, 8864. (b) Thomas, K. G.; Biju, V.;
Guldi, D. M.; Kamat, P. V.; George, M. V. J. Phys. Chem. A 1999, 103,
10755. (c) Tkachenko, N. V.; Rantala, L.; Tauber, A. Y.; Helaja, J.;
Hynninen, P. H.; Lemmetyinen, H. J. Am. Chem. Soc. 1999, 121, 9378. (d)
Tkachenko, N. V.; Vuorimaa, E.; Kesti, T.; Alekseev, A. S.; Tauber, A.
Y.; Hynninen, P. H.; Lemmetyinen, H. J. Phys. Chem. B 2000, 104, 6371.
(e) Montforts, F.-P.; Kutzki, O. Angew. Chem., Int. Ed. 2000, 39, 599. (f)
D’Souza, F.; Deviprasad, G. R.; Rahman, M. S.; Choi, J.-p. Inorg. Chem.
1999, 38, 2157.
ZnP-H2P-C60,22e Fc-ZnP-C60,22f Fc-H2P-C60,22f ZnP-C60,22e
Fc-ref, and C60-ref22f (Figures 1 and 2) were prepared by
following the same procedures as described previously. Struc-
tures of all new compounds were confirmed by spectroscopic
(20) (a) Guldi, D. M.; Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem.
Soc. 1997, 119, 974. (b) Maggini, M.; Guldi, D. M.; Mondini, S.; Scorrano,
G.; Paolucci. F.; Ceroni, P.; Roffia, S. Chem. Eur. J. 1998, 4, 1992. (c)
Polese, A.; Mondini, S.; Bianco, A.; Toniolo, C.; Scorrano, G.; Guldi, D.
M.; Maggini, M. J. Am. Chem. Soc. 1999, 121, 3446. (d) Da Ros, T.; Prato,
M.; Guldi, D. M.; Alessio, E.; Ruzzi, M.; Pasimeni, L. Chem. Commun.
1999, 635. (e) Guldi, D. M.; Luo, C.; Prato, M.; Dietel, E.; Hirsch, A. Chem.
Commun. 2000, 373. (f) Guldi, D. M.; Luo, C.; Da Ros, T.; Prato, M.;
Dietel, E.; Hirsch, A. Chem. Commun. 2000, 375. (g) Luo, C.; Guldi, D.
M.; Maggini, M.; Menna, E.; Mondini, S.; Kotov, N. A.; Prato, M. Angew.
Chem., Int. Ed. 2000, 39, 3905. (h) Guldi, D. M.; Maggini, M.; Mart´ın, N.;
Prato, M. Carbon 2000, 38, 1615. (i) Guldi, D. M.; Maggini, M.; Menna,
E.; Scorrano, G.; Ceroni, P.; Marcaccio, M.; Paolucci, F.; Roffia, S. Chem.
Eur. J. 2001, 7, 1597. (j) Da Ros, T.; Prato, M.; Guldi, D. M.; Ruzzi, M.;
Pasimeni, L. Chem. Eur. J. 2001, 7, 816. (k) Guldi, D. M.; Luo, C.; Swartz,
A.; Scheloske, M.; Hirsch, A. Chem. Commun., 2001, in press.
(21) (a) Imahori, H.; Hagiwara, K.; Akiyama, T.; Taniguchi, S.; Okada,
T.; Sakata, Y. Chem. Lett. 1995, 265. (b) Imahori, H.; Sakata, Y. Chem.
Lett. 1996, 199. (c) Imahori, H.; Hagiwara, K.; Aoki, M.; Akiyama, T.;
Taniguchi, S.; Okada, T.; Shirakawa, M.; Sakata, Y. J. Am. Chem. Soc.
1996, 118, 11771. (d) Sakata, Y.; Imahori, H.; Tsue, H.; Higashida, S.;
Akiyama, T.; Yoshizawa, E.; Aoki, M.; Yamada, K.; Hagiwara, K.;
Taniguchi, S.; Okada, T. Pure Appl. Chem. 1997, 69, 1951. (e) Tamaki,
K.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Shimomura, A.; Okada, T.;
Sakata, Y. Chem. Lett. 1999, 227. (f) Yamada, K.; Imahori, H.; Nishimura,
Y.; Yamazaki, I.; Sakata, Y. Chem. Lett. 1999, 895. (g) Imahori, H.; El-
Khouly, M. E.; Fujitsuka, M.; Ito, O.; Sakata, Y.; Fukuzumi, S. J. Phys.
Chem. A 2001, 105, 325.
(22) (a) Imahori, H.; Yamada, K.; Hasegawa, M.; Taniguchi, S.; Okada,
T.; Sakata, Y. Angew. Chem., Int. Ed. 1997, 36, 2626. (b) Higashida, S.;
Imahori, H.; Kaneda, T.; Sakata, Y. Chem. Lett. 1998, 605. (c) Tamaki,
K.; Imahori, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y. Chem. Commun.
1999, 625. (d) Fujitsuka, M.; Ito, O.; Imahori, H.; Yamada, K.; Yamada,
H.; Sakata, Y. Chem. Lett. 1999, 721. (e) Luo, C.; Guldi, D. M.; Imahori,
H.; Tamaki, K.; Sakata, Y. J. Am. Chem. Soc. 2000, 122, 6535. (f) Imahori,
H.; Tamaki, K.; Guldi, D. M.; Luo, C.; Fujitsuka, M.; Ito, O.; Sakata, Y.;
Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 2607. (g) Fukuzumi, S.; Imahori,
H.; Yamada, H.; El-Khouly, M. E.; Fujitsuka, M.; Ito, O.; Guldi, D. M. J.
Am. Chem. Soc. 2001, 123, 2571.
(23) (a) Akiyama, T.; Imahori, H.; Ajavakom, A.; Sakata, Y. Chem. Lett.
1996, 907. (b) Imahori, H.; Ozawa, S.; Ushida, K.; Takahashi, M.; Azuma,
T.; Ajavakom, A.; Akiyama, T.; Hasegawa, M.; Taniguchi, S.; Okada, T.;
Sakata, Y. Bull. Chem. Soc. Jpn. 1999, 72, 485. (c) Imahori, H.; Yamada,
H.; Ozawa, S.; Ushida, K.; Sakata, Y. Chem. Commun. 1999, 1165. (d)
Imahori, H.; Yamada, H.; Nishimura, Y.; Yamazaki, I.; Sakata, Y. J. Phys.
Chem. B 2000, 104, 2099. (e) Hirayama, D.; Yamashiro, T.; Takimiya, K.;
Aso, Y.; Otsubo, T.; Norieda, H.; Imahori, H.; Sakata, Y. Chem. Lett. 2000,
570. (f) Imahori, H.; Norieda, H.; Yamada, H.; Nishimura, Y.; Yamazaki,
I.; Sakata, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 100. (g)
Fukuzumi, S.; Imahori, H. In Electron Transfer in Chemistry; Balzani, V.,
Ed.; Wiley-VCH: Weinheim, 2001; Vol. 2, pp 927-975.
1
analysis including H NMR, IR, and FAB mass spectra. The
absorption spectrum of Fc-ZnP-H2P-C60 in PhCN is virtually
the superposition of the spectra of the individual chromophores,
indicating the lack of strong interaction between the chro-
mophores in the ground state. Similar results were obtained in
THF and DMF.
One-Electron Redox Potentials and ET Driving Force. An
accurate determination of the driving force (-∆G0ET) for all
the intramolecular ET processes required measuring the redox
potentials of Fc-ZnP-H2P-C60 and the reference chromophores
(Fc-ref and C60-ref) in various solvents. The differential pulse
voltammetry was performed in THF, PhCN, and DMF solu-
tions containing the same supporting electrolyte (i.e., 0.1 M
n-Bu4NPF6). Table 1 summarizes all the redox potentials of the
investigated compounds. The first one-electron oxidation po-
tential (E0ox) of Fc-ref (0.07 V vs ferrocene/ferricenium
(Fc/Fc+)) and the first one-electron reduction potential (E0
)
red
of C60-ref (-1.04 V vs Fc/Fc+) in benzonitrile are the same as
those of Fc-ZnP-H2P-C60 in benzonitrile. This further implies
that electronic interaction between the ferrocene and the C60 is
negligible in the ground state. The first one-electron oxida-
tion potential of Fc-ref remains nearly constant, despite the
substantial increase in solvent polarity.31 On the other hand,
C60-ref exhibits positive shifts for the underlying first one-
electron reduction potentials.22f,32
The driving forces (-∆G0ET(CR) in eV) for the intramolecular
CR processes from the C60 radical anion (C60•-) to the freebase
porphyrin radical cation (H2P•+), the zincporphyrin radical cation
(ZnP•+), and the ferricenium ion (Fc+) in Fc-ZnP-H2P-C60 were
calculated by eq 1, where e stands for the elementary charge.
-∆G0ET(CR) ) e[E0ox(D•+/D) - E0red(A/A•-)]
(1)
The -∆G0
values (in eV), thus obtained in THF,
benzonitrile, and DMF, are listed in Table 2. By contrast, the
ET(CR)
driving force for the intramolecular CS processes (-∆G0
in eV) from the freebase porphyrin singlet excited state to the
ET(CS)
(24) (a) Gust, D.; Moore, T. A.; Moore, A. L.; Lee, S.-J.; Bittersmann,
E.; Luttrull, D. K.; Rehms, A. A.; DeGraziano, J. M.; Ma, X. C.; Gao, F.;
Belford, R. E.; Trier, T. T. Science 1990, 248, 199. (b) Gust, D.; Moore, T.
A.; Moore, A. L.; Macpherson, A. N.; Lopez, A.; DeGraziano, J. M.; Gouni,
I.; Bittersmann, E.; Seely, G. R.; Gao, F.; Nieman, R. A.; Ma, X. C.;
Demanche, L. J.; Hung, S.-C.; Luttrull, D. K.; Lee, S.-J.; Kerrigan, P. K.
J. Am. Chem. Soc. 1993, 115, 11141.
(25) (a) Wasielewski, M. R.; Gains, G. L., III; Wiederrecht, G. P.; Svec,
W. A.; Niemczyk, M. P. J. Am. Chem. Soc. 1993, 115, 10442. (b)
Wasielewski, M. R.; Wiederrecht, G. P.; Svec, W. A.; Niemczyk, M. P.
Sol. Energy Mater. Solar Cells 1995, 38, 127.
(26) (a) Lendzian, F.; Schlu¨pmann, J.; von Gersdorff, J.; Mo¨bius, K.;
Kurreck, H. Angew. Chem., Int. Ed. Engl. 1991, 30, 1461. (b) Hasharoni,
K.; Levanon, H.; von Gersdorff, J.; Kurreck, H.; Mo¨bius, D. J. Chem. Phys.
1993, 98, 2916.
(27) Bru¨ckner, C.; Karunaratne, V.; Rettig, S. J.; Dolphin, D. Can. J.
Chem. 1996, 74, 2182.
C
60 was determined by eq 2, where ∆E0-0 is the energy of the
-∆G0ET(CS) ) ∆E0-0 + ∆G0
(2)
ET(CR)
0-0 transition energy gap between the lowest excited state and
the ground state, which is determined by the 0-0* absorption
(29) Little, W. F.; Reilley, C. N.; Johnson, J. D.; Lynn, K. N.; Sanders,
A. P. J. Am. Chem. Soc. 1964, 86, 1376.
(30) Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc. 1993, 115,
9798.
(31) Gagne´, R. R.; Koval, C. A.; Lisensky, G. C. Inorg. Chem. 1980,
19, 2855.
(32) Dubois, D.; Moninot, G.; Kutner, W.; Jones, M. T.; Kadish, K. M.
J. Phys. Chem. 1992, 96, 7137.
(28) Newman, M. S.; Lee, L. F. J. Org. Chem. 1972, 37, 4468.