400
K. Mochida et al. / Journal of Organometallic Chemistry 692 (2007) 395–401
(h) M. Suginome, Y. Ito, J. Organomet. Chem. 685 (2003) 218;
(i) H. Yoshida, J. Ikadai, M. Shudo, J. Ohshita, A. Kunai, J. Am.
Chem. Soc. 125 (2003) 6638;
trans-PtPh2(PMe2Ph)2 was formed together with oligomers
containing Ph2Ge units. Pure trans-PtPh2(PMe2Ph)2 could
be isolated by recrystallization from a mixture of hexane
and benzene at room temperature.
(j) J. Terao, A. Oda, N. Kame, Org. Lett. 6 (2004) 3341.
[3] (a) J. Chatt, C. Eaborn, P.N. Kapoor, J. Chem. Soc. A 881 (1970);
(b) J. Chatt, C. Eaborn, S.D. Ibekwe, P.N. Kapoor, J. Chem. Soc. A
1343 (1970);
3.9. Formation of trans-Pt(Ph2GeOH)(Ph3Ge)(PMe2Ph)2
by heating of trans-Pt(Ph3Ge)2(PMe2Ph)2 (trans-1)
(c) C. Eaborn, T.N. Metham, A. Pidcock, J. Organomet. Chem. 131
(1977) 377;
(d) T. Kobayashi, T. Hayashi, H. Yamashita, M. Tanaka, Chem.
Lett. 1411 (1988);
(e) T. Kobayashi, T. Hayashi, H. Yamashita, M. Tanaka, Chem.
Lett. 467 (1989);
(f) H. Yamashita, T. Kobayashi, T. Hayashi, M. Tanaka, Chem.
Lett. 1447 (1990);
(g) M. Tanaka, Y. Uchimaru, H.-J. Lautenschlager, Organometallics
10 (1991) 16;
(h) S.L. Grundy, R.D. Holmes-Smith, S.R. Stobart, M.A. Williams,
Inorg. Chem. 30 (1991) 3333;
(i) H. Yamashita, M. Tanaka, M. Goto, Organometallics 11 (1992)
3227;
(j) R.H. Heyn, T.D. Tilley, J. Am. Chem. Soc. 114 (1992) 1917;
(k) M.J. Michalczyk, C.A. Recatto, J.C. Calabrese, M.J. Fink, J.
Am. Chem. Soc. 114 (1992) 7955;
(l) S. Sasaki, M. Ieki, J. Am. Chem. Soc. 115 (1993) 2373;
(m) T. Hikida, K. Onitsuka, K. Sonogashira, T. Hayashi, F. Ozawa,
Chem. Lett. 985 (1995);
The trans-Pt(Ph3Ge)2(PMe2Ph)2 (trans-1) (5.0 mg,
0.005 mmol) was dissolved in dry C6D6 (0.70 cm3) contain-
ing toluene (1 ll, 0.01 mmol) in an NMR tube. The tube
was degassed in vacuum and filled with argon. The pro-
gress of the reaction was monitored at 50 ꢀC by means of
1H and 31P NMR spectroscopy. The NMR signals at
2
3
1.24 ppm (vt with two satellites, JH–P = 29.3 Hz, JH–Pt
= 6.6 Hz) and ꢀ11.0 ppm (1JPt–P = 2616 Hz) assigned to
trans-1 decayed (ca. 50% conversion yield), and a buildup
of new NMR signals at 1.45 ppm (t with two satellites,
3
2JH–P = 6.8 Hz, JH–Pt = 31 Hz) and ꢀ9.5 ppm (1JPt–
P = 2585 Hz) (approximately 1:1) was observed. The reac-
tion mixture was eluted by separative silica gel TLC, trea-
ted with Et3N (1%), with a 1:1 mixture of hexane and
benzene. Recrystallization from a mixture of hexane and
toluene two times gave colorless crystals with a composi-
tion of trans-Pt(Ph2GeOH)(Ph3Ge)(PMe2Ph)2.
(n) F. Ozawa, T. Hikida, Organometallics 15 (1996) 4501;
(o) F. Ozawa, T. Hikida, K. Hasebe, T. Mori, Organometallics 17
(1998) 1018;
(p) F. Ozawa, J. Kamite, Organometallics 17 (1998) 5630;
(q) B. Gehrhus, P.B. Hitchcock, M.F. Lappert, H. Maciejewski,
Organometallics 17 (1998) 5599;
Acknowledgement
(r) Y. Kang, S.O. Kang, J. Ko, Organometallics 18 (1999) 1818;
(s) F. Ozawa, J. Organomet. Chem. 611 (2000) 332;
(t) D. Kalt, U. Schubert, Inorg. Chim. Acta 301 (2000) 211;
(u) M. Tanabe, K. Osakada, J. Am. Chem. Soc. 124 (2002) 4550;
(v) Y.-J. Kim, E.-H. Choi, S.W. Lee, Organometallics 22 (2003) 2316.
[4] (a) H. Yamashita, T-a. Kobayashi, M. Tanaka, J.A. Samuels, W.E.
Streib, Organometallics 11 (1992) 2330;
This work was supported by a Grant-in-Aid for Priority
Area Research on ‘‘Dynamic Complex’’ from the Ministry
of Education, Culture, Science, Sports, and Technology,
Japan.
Appendix A. Supplementary data
(b) H. Komoriya, M. Kako, Y. Nakadaira, K. Mochida, Organo-
metallics 15 (1996) 2014;
(c) H. Komoriya, M. Kako, Y. Nakadaira, K. Mochida, J. Organo-
met. Chem. 611 (2000) 420;
(d) K. Mochida, T. Wada, W. Hatanaka, M. Nanjo, A. Sikine, Y.
Ohashi, M. Sakamoto, A. Yamamoto, Bull. Chem. Soc. Jpn. 74
(2001) 123;
Supplementary data associated with this article can be
References
(e) K. Mochida, K. Hirakue, K. Suzuki, Bull. Chem. Soc. Jpn. 76
(2003) 1023;
(f) K. Mochida, H. Karube, M. Nanjo, Y. Nakadaira, J. Organomet.
Chem. 690 (2005) 2967;
(g) K. Mochida, H. Karube, M. Nanjo, Y. Nakadaira, Organomet-
allics 24 (2005) 4734.
[1] (a) R.D. Miller, J. Michle, Chem. Rev. 89 (1989) 1359;
(b) I. Beletskaya, C. Moberg, Chem. Rev. 99 (1999) 3435;
(c) M. Suginome, Y. Ito, Chem. Rev. 100 (2000) 3221.
[2] (a) R. West, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.),
Comprehensive Organometallic Chemistry, vol. 2, Pergamon Press,
New York, 1982, p. 376;
[5] Y. Usui, T. Fukushima, K. Hagiwara, M. Nanjo, K. Mochida, S.
Komiya, K. Akasaka, T. Kudo, in: Proceedings of the 52nd
Symposium on Organometallic Chemistry, Japan, Kyoto, 2005
(Abstract pp. 4–5);
Y. Usui, T. Fukushima, K. Hagiwara, M. Nanjo, K. Mochida, S.
Komiya, K. Akasaka, T. Kudo, in press. .
[6] P.W. Atkins, Physical Chemistry, sixth ed., Oxford University Press,
Oxford, p. 771.
[7] All structures were optimized at the HF/LANL2DZ+6-31G(d) level.
For the basis set, LANL2DZ was employed for Pt while the 6-31(d)
basis sets were used for other atoms. The details of the results for the
reaction mechanism will be published by T. Kudo. The program code
is GAUSSIAN 03: M.J. Frisch, G.W. Trucks, J.B. Schlegel, G.E.
Scuseria, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B.
Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H.
(b) R. West, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.),
Comprehensive Organometallic Chemistry, vol. 2, Pergamon Press,
New York, 1995, p. 77;
(c) I. Ojima, in: S. Patai, Z. Rappoport (Eds.), The Chemistry of
Organic Silicon Compounds, John Wiley & Sons, New York, 1989;
(d) T.D. Tilley, in: S. Patai, E. Rappoport (Eds.), The Silicon–
heteroatom Bond, John Wiley & Sons, Chichester, 1991 (Chapter 9);
(e) S. Murai, N. Chatani, J. Synth. Org. Chem. Jpn. 51 (1993) 421,
and references cited therein;
(f) H. Yamashita, M. Tanaka, Bull. Chem. Soc. Jpn. 68 (1995) 403,
and references cited therein;
(g) M. Suginome, H. Oike, S.-S. Park, Y. Ito, Bull. Chem. Soc. Jpn.
69 (1996) 1996, and references cited therein;