Journal of the American Chemical Society
Page 6 of 7
marine environment-derived fungi: structures and
(19) Cox, R. J. Polyketides, proteins and genes in fungi:
programmed nano-machines begin to reveal their secrets. Org.
Biomol. Chem. 2007, 5, 2010.
(20) Miyanaga, A.; Kudo, F.; Eguchi, T. Protein-protein
interactions in polyketide synthase-nonribosomal peptide
synthetase hybrid assembly lines. Nat. Prod. Rep. 2018, 35,
1185.
1
2
3
4
5
6
7
8
bioactivities. Dissertation, Ocean University of China 2014,
(4) Sun, W.; Chen, X.; Tong, Q.; Zhu, H.; He, Y.; Lei, L.; Xue, Y.;
Yao, G.; Luo, Z.; Wang, J.; Li, H.; Zhang, Y. Novel small molecule
11beta-HSD1 inhibitor from the endophytic fungus Penicillium
commune. Sci. Rep. 2016, 6, 26418.
(5) Spence, J. T. and George, J. H. Biomimetic total synthesis of
ent-penilactone A and penilactone B. Org. Lett. 2013, 15, 3891.
(6) Pantin, M.; Brimble, M. A.; Furkert, D. P. Total synthesis of
(-)-peniphenone A. J. Org. Chem. 2018, 83, 7049.
(7) Spence, J. T. and George, J. H. Total synthesis of
peniphenones A-D via biomimetic reactions of a common o-
quinone methide intermediate. Org. Lett. 2015, 17, 5970.
(8) Tokoroyama, T. Discovery of the Michael reaction. Eur. J.
Org. Chem. 2010, 2009.
(9) Wadhwa, P.; Kharbanda, A.; Sharma, A. Thia-Michael
addition: An emerging strategy in organic synthesis. Asian J.
Org. Chem. 2018, 7, 634.
(10) Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E.
Michael addition reactions in macromolecular design for
emerging technologies. Prog. Polym. Sci. 2006, 31, 487.
(11) Zhang, Y. and Wang, W. Recent advances in
organocatalytic asymmetric Michael reactions. Catal. Sci.
Technol. 2012, 2, 42.
(12) Nising, C. F. and Bräse, S. The oxa-Michael reaction: from
recent developments to applications in natural product
synthesis. Chem. Soc. Rev. 2008, 37, 1218.
(13) Miyanaga, A. Michael additions in polyketide
biosynthesis. Nat. Prod. Rep. 2019, DOI: 10.1039/C8NP00071A.
(14) Astudillo, L.; Schmeda-Hirschmann, G.; Soto, R.; Sandoval,
C.; Afonso, C.; Gonzalez, M. J.; Kijjoa, A. Acetophenone
derivatives from Chilean isolate of Trichoderma pseudokoningii
Rifai. World J. Microbiol. Biotechnol. 2000, 585.
(15) Nukina, M. Terrestric acid as a phytotoxic metabolite
from Pyricularia oryzae Cavara. Agric. Biol. Chem. 1988, 52,
2357.
(21) He, Y. and Cox, R. J. The molecular steps of citrinin
biosynthesis in fungi. Chem. Sci. 2016, 7, 2119.
(22) Yin, W. B.; Chooi, Y. H.; Smith, A. R.; Cacho, R. A.; Hu, Y.;
White, T. C.; Tang, Y. Discovery of cryptic polyketide
metabolites from dermatophytes using heterologous
expression in Aspergillus nidulans. ACS Synth. Biol. 2013, 2, 629.
(23) Li, W.; Fan, A.; Wang, L.; Zhang, P.; Liu, Z.; An, Z.; Yin, W.-
B. Asperphenamate biosynthesis reveals a novel two-module
NRPS system to synthesize amino acid esters in fungi. Chem. Sci.
2018, 9, 2589.
(24) Chiang, Y. M.; Ahuja, M.; Oakley, C. E.; Entwistle, R.;
Asokan, A.; Zutz, C.; Wang, C. C.; Oakley, B. R. Development of
genetic dereplication strains in Aspergillus nidulans results in
the discovery of aspercryptin. Angew. Chem. Int. Ed. Engl. 2016,
55, 1662.
(25) Yang, X. L.; Awakawa, T.; Wakimoto, T.; Abe, I. Three
acyltetronic acid derivatives: noncanonical cryptic polyketides
from Aspergillus niger identified by genome mining.
Chembiochem. 2014, 15, 1578.
(26) Adrian, J. and Stark, C. B. Total synthesis of muricadienin,
the putative key precursor in the solamin biosynthesis. Org.
Lett. 2014, 16, 5886.
(27) Stebbins, N. D.; Yu, W.; Uhrich, K. E. Enzymatic
polymerization of an ibuprofen-containing monomer and
subsequent drug release. Macromol. Biosci. 2015, 15, 1115.
(28) Ran, H.; Wohlgemuth, V.; Xie, X.; Li, S.-M. A non-heme
FeII/2-oxoglutarate-dependent oxygenase catalyzes a double
bond migration within a dimethylallyl moiety accompanied by
hydroxylation. ACS Chem. Biol. 2018, 13, 2949.
(29) Steffan, N.; Grundmann, A.; Afiyatullov, A.; Ruan, H.; Li, S.-
M. FtmOx1, a non heme Fe(II) and alpha-ketoglutarate-
dependent dioxygenase, catalyses the endoperoxide formation
of verruculogen in Aspergillus fumigatus. Org. Biomol. Chem.
2009, 7, 4082.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(16) Clutterbuck, P. W.; Haworth, W. N.; Raistrick, H.; Smith,
G.; Stacey, M. Studies in the biochemistry of micro-organisms:
The metabolic products of Penicillium charlesii G. Smith.
Biochem. J. 1934, 28, 94.
(17) Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H. U.;
Bruccoleri, R.; Lee, S. Y.; Fischbach, M. A.; Müller, R.; Wohlleben,
W.; Breitling, R.; Takano, E.; Medema, M. H. antiSMASH 3.0 - a
comprehensive resource for the genome mining of biosynthetic
gene clusters. Nucleic Acids Res. 2015, 43, W237.
(30) Nazir, K. H. M. N. H.; Ichinose, H.; Wariishi, H. Molecular
characterization and isolation of cytochrome P450 genes from
the filamentous fungus Aspergillus oryzae. Arch. Microbiol.
2010, 192, 395.
(18) Goswami, R. S. Targeted gene replacement in fungi using
a split-marker approach. Methods Mol. Biol. 2012, 835, 255.
ACS Paragon Plus Environment