1582
S. Vassis et al. / Tetrahedron Letters 42 (2001) 1579–1582
apply intermediates 8d, 8e and 13b to the synthesis of
the three isomers SkukA–C. Indeed, bisacylation of 13b
with Dbc-Cl (4), followed by hydrogenolysis and Boc
group removal, produced SkukA in 55% overall yield.
On the other hand, detritylation of 8e with TFA,
followed by bisacylation with 4, produced the SkukB
precursor 17, whereas bisacylation of 8d with 4 gave the
SkukC precursor 18. Hydrogenolyses of precursors 17
and 18, under the conditions used to obtain N4-Boc-
SPD, produced N8-Bn-SkukB 19 and -SkukC 20,
respectively, along with small amounts of the corre-
sponding SkukB and SkukC. Finally, bisacylation of
the alternative intermediates N8-Trt-SPD 15a and N1-
Trt-SPD 8a with 4, followed by hydrogenolysis, pro-
duced SkukB and SkukC, respectively, in ca. 60%
overall yields.
2. (a) Mamos, P.; Karigiannis, G; Athanassopoulos, C.;
Bichta, S.; Kalpaxis, D.; Papaioannou, D.; Sindona, G.
Tetrahedron Lett. 1995, 36, 5187–5190; (b) Karigiannis,
G.; Mamos, P.; Balayiannis, G.; Katsoulis, I.; Papaioan-
nou, D. Tetrahedron Lett. 1998, 39, 5117–5120.
3. Nordlander, J. E.; Payne, M. J.; Balk, M. A.; Gress, J. L.;
Harris, F. D.; Scott Lane, J.; Lewe, R. F.; Marshall, S. E.;
Nagy, D.; Rachlin, D. J. J. Org. Chem. 1984, 49, 133–138.
4. The structures of the new compounds were determined by
IR, ESI-MS, NMR and microanalysis. The course of the
hydrogenolyses routinely used to split-off the Trt and Bn
protecting groups was followed by ESI-MS.
5. For a most recent application of the polyamide reduction
strategy in the synthesis of PA toxins see: Wang, F.;
Manku, S.; Hall, D. G. Org. Lett. 2000, 2, 1581–1583. For
sensitive polyamides, Raney nickel-mediated desulfuriza-
tion of the corresponding thioamides has been used: Blag-
brough, I. S.; Moya, E. Tetrahedron Lett. 1994, 35,
2057–2060. Recently, the alternative reductive amination
strategy has been frequently used to assemble the PA
skeleton of biologically interesting PACs. For examples
see: (a) Carrington, S.; Renault, J.; Tomasi, S.; Corbel,
J.-C.; Uriac, P.; Blagbrough, I. S. J. Chem. Soc., Chem.
Commun. 1999, 1341–1342; (b) Geall, A. J.; Blagbrough, I.
S. Tetrahedron 2000, 56, 2449–2460; (c) Blagbrough, I. S.;
Geall, A. J.; David, S. A. Bioorg. Med. Chem. Lett. 2000,
10, 1959–1962; (d) Kim, H.-S.; Choi, B.-S.; Kwon, K.-C.;
Lee, S.-O.; Kwak, H. J.; Lee, C. H. Bioorg. Med. Chem.
2000, 8, 2059–2065.
In conclusion, the present methodology provides easy
access to N-monoalkylated and N,N%-bisacylated SPDs.
It can also be applied to the solid phase and is therefore
amenable to combinatorial synthesis applications. Fur-
ther applications of the new SPD derivatives 8a and e,
13b and 15a in the synthesis of other medicinally inter-
esting SPD conjugates are currently in progress.
Acknowledgements
6. For selected papers, reporting the use of the Boc group to
block the secondary amine functions of Pas, see: (a) Car-
rington, S.; Fairlamb, A. H.; Blagbrough, I. S. J. Chem.
Soc., Chem. Commun. 1998, 2335–2336; (b) Nazih, A.;
Cordier, Y.; Bischoff, R.; Kolbe, H. V. J.; Heissler, D.
Tetrahedron Lett. 1999, 40, 8089–8091; (c) Hone, N. D.;
Payne, L. J. Tetrahedron Lett. 2000, 41, 6149–6152; (d)
Garrett, S. W.; Davies, O. R.; Milroy, D. A.; Wood, P. J.;
Pouton, C. W.; Treadgill, M. D. Bioorg. Med. Chem. 2000,
8, 1779–1797; (e) Chhabra, S. R.; Khan, A. N.; Bycroft, B.
W. Tetrahedron Lett. 2000, 41, 1099–1102.
The European Commission and the Greek Ministry of
Education are gratefully acknowledged for financial
support in the form of fellowships (S.V. and M.M.) and
consumables.
References
1. (a) Karigiannis, G.; Papaioannou, D. Eur. J. Org. Chem.
2000, 1841–1863; (b) Kuksa, V.; Buchan, R.; Kong Thoo
Lin, P. Synthesis 2000, 1189–1207 and references cited
therein.
7. Ponasik, J. A.; Strickland, C.; Faerman, C.; Savvides, S.;
Karplus, P. A.; Ganem, B. Biochem. J. 1995, 311, 371–375.
.