10.1002/chem.201903028
Chemistry - A European Journal
FULL PAPER
Table 3. Calculated Excitation Energies (λ/nm), Oscillator Strengths (f) and Transition Types Obtained from TD DFT Calculation on 1 in CH2Cl2 using PBE0 hybrid
functional
λcal
f
λexp
Significant Transitions
(>10%)
Transitions Types
597.6
0.014
560
α-HOMO-3 → LUMO (18%)
β-HOMO-3 → LUMO (12%)
β-HOMO-1 → LUMO (12%)
d
Ru → π* (MLCT)
dRu → π*+dRu (MMMLCT)
dRu+ pCl → π*+dRu (MMMLCT)
PPh3 → π* (LLCT)
490.7
0.068
500
α-HOMO-5 → LUMO (28%)
MLCT = metal to ligand charge transfer; MMMLCT = metal to mixed metal-ligand charge transfer; LLCT = ligand to ligand charge transfer.
Conclusions
References
Coordination of redox noninnocent ligands to transition metal
[1]
(a) M. Parthey, J. B. G. Gluyas, M. A. Fox, P. J. Low, M. Kaupp, Chem.
ions is common for natural electron transfer proteins those
undergo with various mixed-valence states. In this study, it is
disclosed that a combination of redox non-innocent and innocent
donor cites in a ligand is significant in modelling mixed valence
complexes of transition metal ions. In this context, a N-pyridyl-o-
aminophenol derivative containing a redox non-innocent NO-
and a redox innocent pyridine nitrogen donor sites, abbreviated
as (LAPH2) and a mixed valence diruthenium (II, III) complex,
[(PPh3)Cl2RuII(LIQ0)(µ-Cl)2RuIIICl(PPh3)] (1) were successfully
Eur. J. 2014, 20, 6895-6908. b) A. Heckmann, L. Christoph, Angew.
Chem. Int. Ed. 2012, 51, 326-392. c) B. Sarkar, S. Patra, J. Fiedler, R.
B. Sunoj, D. Janardanan, G. K. Lahiri, W. Kaim, J. Am. Chem. Soc.
2008, 130, 3532-3542. d) R. C. Rocha, F. N. Rein, H. Jude, A. P.
Shreve, J. J. Concepcion, T. J. Meyer, Angew. Chem. 2008, 120, 513-
516. e) K. D. Demadis, C. M. Hartshorn, T. J. Meyer, Chem. Rev. 2001,
101, 2655-2685.
[2]
Ligand Mixed Valency: a) S. D. J. McKinnon, B. O. Patrick, A. B. P.
Lever, R. G. Hicks, Inorg. Chem. 2013, 52, 8053-8066. b) C. P. Kubiak,
Inorg. Chem. 2013, 52, 5663-5676. c) S. N. Brown, Inorg. Chem. 2012,
51, 1251-1260. d) C. G. Pierpont, Inorg. Chem. 2011, 50, 9766-9772.
e) A. Das, T. Scherer, S. T. K. Maji, S. M. Mobin, F. A. Urbanos, R.
Jimenez-Aparicio, W. Kaim, G. K. Lahiri, Inorg. Chem. 2011, 50, 7040-
7049. f) T. J. Mooibroek, G. Aromí, M. Quesada, O. Roubeau, P.
Gamez, S. DeBeer George, J. van Slageren, S. Yasin, E. Ruiz, J.
Reedijk, Inorg. Chem. 2009, 48, 10643-10651. g) P. H. Dinolfo, S. J.
Lee, V. Coropceanu, J. L. Brédas, J. T. Hupp, Inorg. Chem. 2005, 44,
5789-5797. h) A. P. Meacham, K. L. Druce, Z. R. Bell, M. D. Ward, J. B.
Keister, A. B. P. Lever, Inorg. Chem. 2003, 42, 7887-7896. i) H. C.
Chang, K. Mochizuki, S. Kitagawa, Inorg. Chem. 2002, 41, 4444-4452.
a) E. I. Solomon, X. Xie, A. Dey, Chem. Soc. Rev. 2008, 37, 623-638.
b) J. Stubbe, W. A. van der Donk, Chem. Rev. 1998, 98, 705-762.
Creutz and Taube Complex: a) C. Creutz, H. Taube, J. Am. Chem. Soc.
1973, 95, 1086-1094. b) C. Creutz, H. Taube, J. Am. Chem. Soc. 1969,
91, 3988-3989.
0
isolated (LIQ is the 2e oxidized o-iminobenzoquinone form of
LAPH2). 1/1- and 1-/12- redox couples are reversible, while 1+/1
and 12+/1+ redox couples are not due to PPh3 dissociation,
however they are reversible in CH2Cl2 containing 1.5×10-4
M
PPh3 solution. Single crystal X-ray crystallography, EPR
spectroscopy, spectroelectrochemical measurement, inter
valence charge transfer (IVCT) transition and broken symmetry
(BS) DFT calculations confirm that 1 and 12+ are respectively
diruthenium (II, III), [RuII(LIQ0)(µ-Cl)2RuIII] and diruthenium (III, IV),
[RuIII(LIQ0)(µ-Cl)2RuIV], mixed valence complexes, while 1+ and 1-
are diruthenium (III, III), [RuIII(LIQ0)(µ-Cl)2RuIII] and diruthenium (II,
II), [RuII(LIQ0)(µ-Cl)2RuII] complexes of (LIQ0). The ground
[3]
[4]
●-
electronic state of 12- is analyzed by a hybrid state of [RuII(LISQ
)(µ-Cl)2RuII] ↔ [RuIII(LAP2-)(µ-Cl)2RuII] forms. The NIR absorption
spectra of 1+ and 12+ display IVCT transition at 1300 and 1370
nm, while the IVCT bands are absent in other analogues. The
study ushers that a combination of redox innocent and redox
noninnocent donor sites in a ligand is worthy in stabilizing
different redox states of a metal ion in the dinuclear and poly-
nuclear forms and makes the theme of isolating mixed valence
complexes of a transition metal ion successful.
[5]
a) F. F. Khan, J. Klein, J. L. Priego, B. Sarkar, R. J. Aparicio, G. K.
Lahiri, Inorg. Chem., 2018, 57, 12800-12810. b) A. Mandal, A. Grupp,
B. Schwederski, W. Kaim, G. K. Lahiri, Inorg. Chem. 2015, 54, 10049-
10057. c) A. Mandal, H. Agarwala, R. Ray, S. Plebst, S. M. Mobin, J. L.
Priego, R. J. Aparicio, W. Kaim, G. K. Lahiri, Inorg. Chem. 2014, 53,
6082-6093. d) A. K. Das, B. Sarkar, J. Fiedler, S. Zális, I. Hartenbach,
S. Strobel, G. K. Lahiri, W. Kaim, J. Am. Chem. Soc. 2009, 131, 8895-
8902. e) S. Maji, B. Sarkar, S. M. Mobin, J. Fiedler, F. A. Urbanos, R. J.
Aparicio, W. Kaim, G. K. Lahiri, Inorg. Chem. 2008, 47, 5204-5211. f) B.
Sarkar, S. Patra, J. Fiedler, R. B. Sunoj, D. Janardanan, G. K. Lahiri, W.
Kaim, J. Am. Chem. Soc. 2008, 130, 3532-3542. g) M. Koley, B. Sarkar,
S. Ghumaan, E. Bulak, J. Fiedler, W. Kaim, G. K. Lahiri, Inorg.
Chem., 2007, 46, 3736-3742. h) M. Koley, B. Sarkar, S. Ghumaan, E.
Bulak, J. Fiedler, W. Kaim, G. K. Lahiri, Inorg. Chem. 2007, 46, 3736-
3742. i) S. Ghumaan, S. Kar, S. M. Mobin, B. Harish, V. G. Puranik, G.
K. Lahiri, Inorg. Chem. 2006, 45, 2413-2423. j) S. Patra, B. Sarkar, S.
Ghumaan, J. Fiedler, W. Kaim, G. K. Lahiri, Inorg. Chem. 2004, 43,
6108-6113. k) N. Chanda, B. Sarkar, S. Kar, J. Fiedler, W. Kaim, G. K.
Lahiri, Inorg. Chem. 2004, 43, 5128-5133. l) S. Kar, N. Chanda, S. M.
Mobin, A. Datta, F. A. Urbanos, V. G. Puranik, R. Jimenez-Aparicio, G.
K. Lahiri, Inorg. Chem. 2004, 43, 4911-4920. m) S. Patra, T. A. Miller, B.
Acknowledgements
The authors acknowledge the financial support received from
DST (EMR/2016/005222). DD is an INSPIRE fellow of DST
(IF131158), New Delhi, India.
Keywords: • di-ruthenium mixed valence complex • organic
radical • IVCT transition • broken symmetry DFT • asymmetric
bridging ligand.
This article is protected by copyright. All rights reserved.