S.-S. P. Chou, Y.-H. Yeh / Tetrahedron Letters 42 (2001) 1309–1311
1311
considerably improved by replacing the p-bridge of
CꢀN with CꢀC. By comparing the thiophene, furan and
pyrrole analogues it can be seen that the heterocyclic
moiety has significant influence on the UV–vis absorp-
tions, NLO properties and thermal stability.
Acknowledgements
Figure 1. X-Ray crystal structure of 2a.
Financial support of this work by the National Science
Council of the Republic of China is gratefully acknowl-
edged (NSC 89-2113-M-030-003). We also thank Dr.
C.-T. Chen for his assistance in using the solvato-
chromic method.
References
1. Chemla, D. S.; Zyss, J. Nonlinear Optical Properties of
Organic Molecules and Crystals; Academic Press:
Orlando, USA, 1987; Vols. 1 and 2.
Figure 2. Packing drawing of compound 2a.
2. Prasad, P. N.; Zhang, Y.; Gao, X.; Pan, H. Chem. Mater.
1995, 7, 816–821.
The molecular hyperpolarizabilities (vgi) of chro-
mophores 1–4 were estimated by solvatochromism.14
The vgi values at zero-frequency (vgi0) were obtained
using the two-level model.15 The vgi0 for compounds
1–4 are 0.5–2.6 times that of p-nitroaniline (PNA). By
comparing the vgi0 values of 2a, 5a, 6a; 3a, 7a, 8a and
4a, 9a, 10a, it can be seen that thiophene>furan>
pyrrole, which is in agreement with the theoretical
calculations.16 Comparison of the vgi0 values of 1–9
reveals that replacing the methyl sulfone group with the
phenyl sulfone group increases their second-order non-
linearities. Pyrrole compounds with a p-bridge of CꢀC
have higher vgi0 values than the CꢀN analogues (2a/
9a=1.3, 2b/9b=1.2).
3. Prasad, P. N.; Williams, D. J. Introduction to Nonlinear
Optical Effects in Molecules and Polymers; Wiley: New
York, 1991; pp. 132–174.
4. Drost, K. J.; Jen, A. K.-Y.; Rao, V. P. Chemtech 1995,
25(9), 16–25 and references cited therein.
5. Marder, S. R.; Perry, J. W. Science 1994, 263, 1706–1707.
6. (a) Rao, V. P.; Jen, A. K.-Y.; Wong, K. Y.; Drost, K. J.
Tetrahedron Lett. 1993, 34, 1747–1750; (b) Jen, A. K.-Y.;
Rao, V. P.; Wong, K. Y.; Drost, K. J. J. Chem. Soc.,
Chem. Commun. 1993, 1118–1120.
7. (a) Chou, S. S. P.; Sun, D. J.; Lin, H. C.; Yang, P. K. J.
Chem. Soc., Chem. Commun. 1996, 1045–1046; (b) Chou,
S. S. P.; Sun, D. J.; Hung, J. Y.; Yang, P. K.; Lin, H. C.
Tetrahedron Lett. 1996, 37, 7279–7282.
8. Chou, S. S. P.; Shen, C. H. Tetrahedron Lett. 1997, 38,
6407–6410.
9. Chou, S. S. P.; Hsu, G. T.; Lin, H. C. Tetrahedron Lett.
1999, 40, 2157–2160.
10. Ulman, A.; Willand, C. S.; Kohler, W.; Robbello, D. S.;
Williams, D. J.; Handley, L. J. Am. Chem. Soc. 1990,
112, 7083–7090.
11. Zhang, J.-X.; Dubois, P.; Jerome, R. Synth. Commun.
1996, 26, 3091–3095.
12. Maryanoff, B. E.; Reitz, A. B. Chem. Rev. 1989, 89,
863–927.
13. Effenberger, F.; Schlosser, H. Synthesis 1990, 11, 1085–
1094.
The decomposition temperatures (Td) of 1–4 were mea-
sured by thermogravimetric analysis (TGA) at a heat-
ing rate of 10°C min−1. It can be seen that the
(phenyl)sulfonyl-substituted pyrrole chromophores
have higher Td than the (methyl)sulfonyl derivatives.
The Td shows a general trend of thiophene:pyrrole
(N-methylated)>furan. The Td of compound 2a (351°C)
is among the highest we have observed for these hetero-
cyclic compounds. Furthermore, within the pyrrole
series, the Td follows the order trans>cis and CꢀC>
CꢀN.
We have also obtained the X-ray crystal structure of 2a
(Fig. 1)17 which shows the trans configuration about the
CꢀC bond and a dihedral angle of 4.53° between the
benzene and the pyrrole ring. Compound 2a has a
noncentrosymmetric alignment with a P212121 space
group (Fig. 2).
14. (a) Paley, M. S.; Harris, J. M. J. Org. Chem. 1989, 54,
3774–3778; (b) For the determination of veg and vg(ve−
vg), see footnote 9 of Ref. 8.
15. Oudar, J. L.; Chemla, D. S. J. Chem. Phys. 1977, 66,
2664–2668.
16. Varanasi, P. R.; Jen, A. K.-Y.; Chandrasekhar, J.; Nam-
boothiri, I. N. N.; Rathna, A. J. Am. Chem. Soc. 1996,
118, 12443–12448.
In summary, we have achieved the first synthesis of a
series of sulfonyl-substituted pyrrole chromophores 1–4
and have measured their UV–vis absorptions, second-
order nonlinearities and decomposition temperatures.
17. Crystal data for C21H22N2O2S (2a): fw 366.47,
,
orthorhombic, space group P212121, a=10.07(17) A, b=
3
,
,
,
15.597(3) A, c=23.952(5) A, V=3763.0(12) A , Z=8,
The vgi0 and Td values of the pyrrole compou
.
nds are
D
calcd=1.294 g/cm3, orange crystal (0.60×0.50×0.45 mm).