S. E. Matthews et al. / Tetrahedron Letters 42 (2001) 1355–1357
1357
a,v-bis(oxiranylmethyl) PEG 1500 7c with 5 was shown
by GPC to give predominantly polymeric material.
4. Chenevert, R.; D’Astous, L. J. Heterocycl. Chem. 1986,
23, 1785–1787.
5. Vitali, C. A.; Masci, B. Tetrahedron 1989, 45, 2201–2212.
6. Gibson, H. W.; Bheda, M. C.; Engen, P.; Shen, Y. X.;
Sze, J.; Zhang, H.; Gibson, M. D.; Delaviz, Y.; Lee,
S.-H.; Liu, S.; Wang, L.; Nagvekar, D.; Rancourt, J.;
Taylor, L. T. J. Org. Chem. 1994, 59, 2186–2196.
7. Zhang, Y.; Wada, T.; Sasabe, H. Chem. Commun. 1996,
621–622.
8. Matthews, S. E.; Pouton, C. W.; Threadgill, M. D. J.
Chem. Soc., Chem. Commun. 1995, 1809–1811.
9. Matthews, S. E.; Pouton, C. W.; Threadgill, M. D. Adv.
Drug Delivery Rev. 1996, 18, 219–267.
The reaction proceeds by an initial addition of one
secondary amine to one oxirane. Subsequently, it may
be postulated that macrocyclisation occurs only when
the polyether is pre-organised. It may be speculated
that complexation to a sodium cation facilitates the
movement of the remaining oxirane and secondary
amine into close proximity. Such traces of sodium ions
may be adventitiously present as a minor contaminant
in 7a,b. In this context, it is notable that the [M+Na]
peaks are highly abundant for all oligomers of 7a in the
electrospray MS, whereas the [M+K] ions are of low
abundance and are absent for the lower oligomers. In
the case of 7c, an analogous complexation would not
bring about this favourable conformation.
10. Matthews, S. E.; Pouton, C. W.; Threadgill, M. D. New
J. Chem. 1999, 23, 1087–1096.
11. Garrett, S. W.; Davies, O. R.; Milroy, D. A.; Wood, P.
J.; Pouton, C. W.; Threadgill, M. D. Bioorg. Med. Chem.
2000, 8, 1779–1797.
12. Matthews, S. E.; Pouton, C. W.; Threadgill, M. D. J.
This straightforward method of preparing hybrid
polyether–hydrocarbon macrocycles opens avenues of
approach to a wide range of functionalised hybrid
macrocycles. Our continuing investigations are explor-
ing the detail and the generality of the process.
Controlled Release 2000, 67, 129–139.
13. Aggen, J. B.; Humphrey, J. M.; Gauss, C.-M.; Huang,
H.-B.; Nairn, A. C.; Chamberlain, A. R. Bioorg. Med.
Chem. 1999, 7, 543–564.
14. New compounds were characterized by 1H NMR and
high resolution MS.
15. Gu, X.-P.; Ikeda, I.; Okahara, M. Synthesis 1985, 649–
651.
Acknowledgements
16. Synthesis of 7a. PEG 400 6a (5.00 g, 12.5 mmol) was
added dropwise to epichlorohydrin (6.75 g, 75 mmol),
NaOH (3.0 g, 7.5 mmol) and water (0.3 mL) and was
stirred at 65°C for 2 h. The cooled suspension was filtered
and the solids were washed with CH2Cl2. Drying and
evaporation gave 7a (4.49 g, 71%).
We thank Mr. R. R. Hartell and Mr. D. Wood (Uni-
versity of Bath) for NMR spectra, Dr. G. J. Price
(Bath) for GPC analyses, Mr. C. Cryer (Bath) and Dr.
J. A. Ballantine (EPSRC Mass Spectrometry Centre,
Swansea) for mass spectra. We also thank Sanofi
Winthrop Pharmaceuticals for financial support.
S.E.M. held a University of Bath Research Bursary.
17. Synthesis of 8a. Compounds 5 (500 mg, 1.66 mmol) and
7a (806 mg, 1.66 mmol) were heated at reflux in EtOH
(10 mL) for 15 h. Evaporation gave 8a (1.30 g, 99%) as a
colourless gum.
18. Bruker LC 21/41 system; THF eluant at 1 mL min−1; ‘PL
Gel’ (Polymer Laboratories).
19. 1H NMR data for 8a: l (CDCl3) 1.29 (10 H, brs,
CH2CH2(CH2)5CH2CH2), 1.49 (4 H, br, 2×NCH2CH2),
2.34 (6 H, s, 2×NMe), 2.42 (2 H, dd, J=13, 4 Hz) and
2.50 (2 H, dd, J=13, 8 Hz) (2×NCH2CHOH), 3.05 (2 H,
d, J=16 Hz) and 3.10 (2 H, d, J=16 Hz) (2×Sar-H2),
3.23 (4 H, q, J=7 Hz, 2×NCH2CH2), 3.35–3.55 (4 H, m,
2×OCH2CHOH), 3.62 (ca. 35 H, br, 9×OCH2CH2O),
3.91 (2 H, m, 2×CHOH), 7.45 (2 H, br, 2×NH).
References
1. Pugh, C.; Bae, J.-Y.; Scott, J. R.; Wilkins, C. L. Macro-
molecules 1997, 30, 8139–8152.
2. McPhee, M. M.; Kerwin, S. M. J. Org. Chem. 1996, 61,
9385–9393.
3. Yu, G.-E.; Sinnathamby, P.; Price, C.; Booth, C. Chem.
Commun. 1996, 31–32.
.
.