and NEP,5 and, relevant to this communication, matrix
metalloproteinases (MMP).6 One of the best examples of an
important orally bioavailable macrocyclic peptide is cy-
closporine, which is a major drug in use for organ trans-
plantation and immune suppression.7
A biologically active macrocyclic template that has been
observed repeatedly in nature is the diaryl ether linker.
Important examples in this class include the vancomycin
family of antibiotics,8 the chloropeptins,9 and protease
inhibitors K-13 and OF4949I-IV.10 The medicinal signifi-
cance of these molecules has resulted in intensive efforts
toward their synthesis, and a number of interesting ap-
proaches to these complex natural products have been
published.11
In drug design, the use of a diarly ether macrocyle has
recently proven effective in the preparation of HIV protease
inhibitors.3 In addition our group has previously shown that
succinyl peptide inhibitors of MMPs can be cyclized to
produce biologically active cyclophanes as exemplified by
SE205,6a a highly water soluble MMP inhibitor that is
bioavailable in rats and dogs (Figure 1). MMPs are a class
ether linked macrocycle and report herein the application of
the Cu(II)-assisted intramolecular O-arylation of a phenol
with an aryl boronic acid as the key reaction. This mild
procedure complements the intermolecular version of this
reaction recently reported by Chan, Evans, and Lam.13
The rational design of cyclic MMP inhibitors has been
facilitated through the examination of X-ray crystal structures
of enzyme inhibitor complexes. The key inhibitor binding
interactions with the enzyme involves a bidentate ligation
of the hydroxamic acid to the active-site zinc and a series
of four hydrogen bonds formed between the two amides of
the inhibitor and subsite residues of the enzyme. The
macrocyclic linker does not interact directly with the enzyme
and is projected toward solvent.6 This observation allows
one to manipulate the physical properties of the molecule
through changing the linker without having a deleterious
effect on binding, provided the above key binding interac-
tions are maintained. Computer modeling of our proposed
diaryl ether macrocyclic targets suggested that the com-
pounds could adopt an appropriate conformation suitable for
binding to the enzymes in the MMP class.
A representative synthetic example is presented in Scheme
1. The desired anti-succinate 2 was prepared from the chiral
succinyl half ester 1.14 Treatment of 1 with 2.1 equiv of
lithium diisopropylamide (LDA), followed by monoalkyla-
tion of the dianion with 3-(4-benzyloxy)phenyliodopropane,
gave a 1:1 mixture of anti/syn products. Equilibration of this
mixture resulted in a 2:1 anti/syn mixture and could be
subsequently improved to about 3:1 with successive depro-
tonation and acid quenching steps as described in the
procedure of Becket et al.14 We investigated the use of
counterions other than Li in this equilibration process. It was
found that deprotonation with LDA at -78 °C, warming to
0 °C and cooling to -78 °C, followed by the addition of 2
equiv of diethyl-aluminum chloride at -78 °C, subsequent
warming to 0 °C and cooling to -78 °C, and rapid quenching
with acidic methanol resulted in a 10:1 separable mixture
of anti/syn products. The generality of this result is currently
under investigation and will be fully disclosed in a future
publication.
Figure 1. Structure of SE205.
of matrix degrading enzymes that have been implicated in
cancer and arthritis.12 In the further exploration of macro-
cyclic MMP inhibitors, we set out to examine the biphenyl
(5) (a) Ksander, G. M.; de Jesus, R.; Yuan, A.; Ghai, R. D.; McMartin,
C.; Bohacek, R. J. Med. Chem. 1997, 36, 506. (b) MacPherson, L. J.;
Bayburt, E. K.; Capparelli, M. P.; Bohacek, R. S.; Clarke, F. H.; Ghai, R.
D.; Sakane, U.; Berry, C. J.; Peppard, J. V.; Trapani, A. J. J. Med. Chem.
1993, 36, 3821. (c) Stanton, J. L.; Sperbeck, D. M.; Trapani, A. J.; Cote,
D.; Sakane, Y.; Berry, C. J.; Ghai, R. D. J. Med. Chem. 1993, 36, 3829.
(6) (a) Xue, C.-B.; He, X.; Roderick, J.; DeGrado, W. F.; Cherney, R.
J.; Hardman, K. D.; Nelson, D. J.; Copeland, R. A.; Jafee, B. D.; Decicco,
C. P. J. Med. Chem. 1998, 41, 1745. (b) Cherney, R. J.; Wang, L.; Meyer,
D.; Xue, C-B.; Wasserman, Z. R.; Hardman, K. D.; Welch, P. K.; Covington,
M. B.; Copeland, R. A.; Arner, E. C.; DeGrado, W. F.; Decicco, C. P. J.
Med. Chem. 1998, 41, 1749. (b) Steinman, D. H.; Curtin, M. L.; Garland,
R. B.; Davidsen, S. K.; Heyman, H. R.; Holms, J. H.; Albert, D. H.; Magoc,
T. J.; Nagy, I. B.; Marcotte, P. A.; Li, J.; Morgan, D. W.; Hutchins, C.;
Summers, J. B. Bioorg. Med. Chem. Lett. 1998, 8, 2087.
(7) (a) In Cyclosporine; Prog. Allergy; Borel, J. F.; Ed.; Karer: Basel,
1986; p 38. (b) Borel, J. F. In Cyclosporine; White, D. J. G., Ed.; Elsevier
Biomedical: Amsterdam, 1982; p 5. (c) Kahan, B. D.; Borel, J. F.
Transplant. Proc. 1983, 15, Suppl. 1. (d) Stiller, C. R.; Keown, P. A. In
Progress in Transplantation; Morris, P. J., Tilney, N. L., Eds.; 1984; pp 1,
11.
Purified anti product 2 was then coupled to a functional-
ized and appropriately protected phenethylamine derivative
to obtain the succinyl peptides 3a-c in good yield. Aryl
boronic esters 4 were prepared using the Pd(0)-catalyzed
(10) (a) Kase, H.; Kaneko, M.; Yamada, K. J. Antibiot. 1987, 40, 450.
(b) Yasuzawa, T.; Shirahata, K.; Sano, H. J. Antibiot. 1987, 40, 455. (c)
Sano, S.; Ikai, K.; Kuroda, H.; Nakamura, T.; Obayashi, A.; Ezure, Y.;
Enomotom H. J. Antibiot. 1986, 39, 1674. (d) Sano, S.; Ueno, M.; Katayama,
K.; Nakamura, T.; Obayashi, A. J. Antibiot. 1986, 39, 1697. (e) Sano, S.;
Kuroda, H.; Ueno, M.; Yoshikawa, Y.; Nakamura, T.; Obayashi, A. J.
Antibiot. 1987, 40, 519.
(11) Nicalaou, K. C.; Brase, S.; Winssinger, N. Angew. Chem., Int. Ed.
1999, 38, 2097.
(12) ) (a) Cawston, T. E. Pharm. Ther. 1996, 70, 163. (b) Johnson, L.
L.; Dyer, R.; Hupe, D. J. Curr. Opin. Chem. Biol. 1998, 2, 466, (c) Massova,
I.; Kotra, L. P.; Fridman, R.; Mobashery, S. FASEB J. 1998, 12, 1075.
(13) ) (a) Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters M. P.
Tetrahedron Lett. 1998, 39, 2933. (b) Evans, D. A.; Katz, J. L.; West T. R.
Tetrahedron Lett. 1998, 39, 2937. (c) Lam, P. Y. S.; Clark, C. G.; Saubern,
S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron
Lett. 1998, 39, 2941.
(8) (a) Evans, D. A.; DeVries, K. M. In Glycopeptide Antibiotics;
Nagarajan, R., Ed.; Marcel Dekker: New York, 1994; pp 63-104. (b) Rama
Rao, A.; Garjar, M.; Reddy, K.; Rao, A. Chem ReV. 1995, 95, 2135.
(9) (a) Mtsuzaki, K.; Ikeda, H.; Ogino, T.; Matsumoto, A.; Woodruff,
H. B.; Tanaka, H.; Omura, S. J. Antibiot. 1994, 47, 1173. (b) Matsuzaki,
K.; Ogino, T.; Sunazuka, T.; Tanaka, H.; Omura, S. J. Antibiot. 1997, 50,
66. (c) Kaneko, I.; Kamoshida, K.; Takahashi, S. J. Antibiot. 1989, 42,
236.
(14) ) Beckett, R. P.; Crimmin, M. J.; Davis, M. H.; Spavold, Z. A. Synlett
1993, 137.
1030
Org. Lett., Vol. 3, No. 7, 2001