Journal of the American Chemical Society
Communication
Scheme 3. Pt-Catalyzed C(sp3)−H Chlorination and
Subsequent Functionalization of 20 and 24
(6) (a) Labinger, J. A.; Herring, A. M.; Lyon, D. K.; Luinstra, G. A.;
Bercaw, J. E.; et al. Organometallics 1993, 12, 895. (b) Labinger, J. A.;
Herring, A. M.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 5628.
(7) For synthetic applications, see: (a) Kao, L.-C.; Sen, A. J. Chem.
Soc., Chem. Commun. 1991, 1242. (b) Basickes, N.; Sen, A. Polyhedron
1995, 14, 197−202. (c) Dangel, B. D.; Johnson, J. A.; Sames, D. J. Am.
Chem. Soc. 2001, 123, 8149. (d) Lin, M.; Shen, C.; Garcia-Zayas, E. A.;
Sen, A. J. Am. Chem. Soc. 2001, 123, 1000. (e) Lee, J. M.; Chang, S.
Tetrahedron Lett. 2006, 47, 1375. (f) Weinberg, D. R.; Labinger, J. A.;
Bercaw, J. E. Organometallics 2007, 26, 167. (g) Chen, G. S.; Labinger,
J. A.; Bercaw, J. E. Organometallics 2009, 28, 4899.
(8) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57,
10257.
(9) For examples of the α-C−H oxygenation of amines, see: (a) Kim,
S.; Ginsbach, J. W.; Lee, J. Y.; Peterson, R. L.; Liu, J. J.; Siegler, M. A.;
Sarjeant, A. A.; Solomon, E. I.; Karlin, K. D. J. Am. Chem. Soc. 2015,
We propose that protonation of the amine is critical to the
success of these transformations for several reasons. First,
protonation renders the substrates water-soluble. Second,
protonation prevents deactivation of the catalyst/oxidant by
amine binding. Finally, the inductive electron-withdrawing
ammonium cation electronically deactivates proximal C−H
bonds, resulting in high selectivity for terminal C(sp3)−H sites
that are remote to nitrogen. Efforts to design second-generation
Pt catalysts that exhibit enhanced efficiencies and terminal
selectivities in this transformation are underway in our
laboratory and will be reported in due course.
́
137, 2867. (b) Genovino, J.; Lutz, S.; Sames, D.; Toure, B. B. J. Am.
̈
Chem. Soc. 2013, 135, 12346. (c) Ling, Z.; Yun, L.; Liu, L.; Fu, X.; Wu,
B. Chem. Commun. 2013, 49, 4214. (d) Liu, P.; Liu, Y.; Wong, E. L.-
M.; Xiang, S.; Che, C.-M. Chem. Sci. 2011, 2, 2187. (e) Park, J.;
Morimoto, Y.; Lee, Y.-M.; You, Y.; Nam, W.; Fukuzumi, S. Inorg.
Chem. 2011, 50, 11612. (f) Murahashi, S.; Naota, T.; Yonemura, K. J.
Am. Chem. Soc. 1988, 110, 8256.
(10) (a) McNally, A.; Haffemayer, B.; Collins, B. S. L.; Gaunt, M. J.
Nature 2014, 510, 129. (b) Smalley, A. P.; Gaunt, M. J. J. Am. Chem.
Soc. 2015, 137, 10632.
(11) For examples of protected amines as directing groups for
C(sp3)−H oxidation, see: (a) Zaitsev, V. G.; Shabashov, D.; Daugulis,
O. J. Am. Chem. Soc. 2005, 127, 13154. (b) Zhang, S.; He, G.; Zhao, Y.;
Wright, K.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2012, 134, 7313.
(c) Chan, K. S. L.; Wasa, M.; Chu, L.; Laforteza, B. N.; Miura, M.; Yu,
J. Q. Nat. Chem. 2014, 6, 146.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(12) For a complementary strategy involving terminal-selective, Ir-
catalyzed C−H borylation of aliphatic amines, see: Li, Q.; Liskey, C.
W.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 8755.
Experimental and spectral details for all new compounds
and all reactions reported as well full details on selectivity
determination from crude reactions (PDF)
(13) Isaacs, N. S. Physical Organic Chemistry. 2nd ed.; Longman
Group Limited: London, 1995; p 146−192.
(14) Inductive electron-withdrawing groups are known to deactivate
adjacent C−H bonds toward Pt-catalyzed C(sp3)−H activation. For
example, see ref 7d and the following: Periana, R. A.; Taube, D. J.;
Gamble, S.; Taube, H.; Satoh, T.; Fujii, H. Science 1998, 280, 560.
(15) For a later example of CuCl2 as an oxidant in Shilov chemistry,
see ref 7e and the following: Wang, Z.; Sugiarti, S.; Morales, C. M.;
Jensen, C. M.; Morales-Morales, D. M. Inorg. Chim. Acta 2006, 359,
1923.
AUTHOR INFORMATION
Corresponding Author
Notes
■
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
(16) (a) Maeda, Y.; Nishimura, T.; Uemura, S. Bull. Chem. Soc. Jpn.
2003, 76, 2399. (b) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.;
Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
■
We acknowledge funding from NIH, NIGMS (GM073836).
M.L. thanks the NSF for a graduate fellowship. We also
acknowledge Dr. Sarah J. Ryan for helpful discussions.
(17) The only internal chain oxidation products detected in more
than trace quantities were at the site that is one carbon away from the
terminal position. Additionally, only small amounts of products
derived from C−H functionalization on the pyrrolidine ring were
observed, except with N-ethylpyrrolidine. In the latter case, we
estimate that ∼15% of ring oxidation products are formed.
(18) The yields are based on CuCl2·2H2O as the limiting reagent.
Since Cu is a 1e− oxidant, 100% yield = 0.5 × mmol CuCl2·2H2O
added to the reaction. Yields above 100% reflect regeneration of Cu by
ambient air.
(19) The NMR yield of the C−H hydroxylation to form 4 under our
standard conditions was 142%. When this same reaction was
conducted under an atmosphere of N2 (rather than air), a significantly
lower yield of 41% was obtained. Furthermore, when the reaction
under air was conducted in a small vessel (4 mL vs 10 mL sealed vial),
the yield decreased to 47%. All of these pieces of data are consistent
with the proposal that the O2 (in air) is turning over the Cu.
(20) (a) Luinstra, G. A.; Wang, L.; Stahl, S. S.; Labinger, J. A.;
Bercaw, J. E. J. Organomet. Chem. 1995, 504, 75. (b) DeVries, N.; Roe,
D. C.; Thorn, D. L. J. Mol. Catal. A: Chem. 2002, 189, 17.
REFERENCES
■
(1) (a) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (b) Shilov, A. E.;
Shul’pin, G. B. Chem. Rev. 1997, 97, 2879. (c) Crabtree, R. H. J. Chem.
Soc., Dalton Trans. 2001, 2437. (d) Labinger, J. A.; Bercaw, J. E. Nature
2002, 417, 507. (e) Per
́
ez, P. J. Alkane C-H Activation by Single-Site
Metal Catalysis; Perez, P. J., Ed.; Catalysis by Metal Complexes, Vol.
́
38; Springer: Dordrecht, The Netherlands, 2012.
(2) Hartwig, J. F. Chem. Soc. Rev. 2011, 40, 1992.
(3) (a) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
(b) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L. Chem. Rev. 2010,
110, 704. (c) Nam, W. Acc. Chem. Res. 2007, 40, 522. (d) White, M. C.
Science 2012, 335, 807.
(4) (a) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471. (b) Stahl,
S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. 1998, 37,
2180. (c) Shilov, A. E.; Shteinman, A. A. Coord. Chem. Rev. 1977, 24,
97.
(5) (a) Gol’dshlger, N. F.; Tyabin, M. B.; Shilov, A. E.; Shteinman, A.
A. Zh. Fiz. Khim. 1969, 43, 2174. (b) Gol’dshlger, N. F.; Eskova, V. V.;
Shilov, A. E.; Shteinman, A. A. Zh. Fiz. Khim. 1972, 46, 1353.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX