4270
V. J. Majo et al. / Bioorg. Med. Chem. Lett. 15 (2005) 4268–4271
2. Fajardo, M.; Di Cesare, P. E. Drugs Aging 2005, 22, 141.
O
O
O
c-d
a-b
Br
Br
3. Saito, T.; Rodger, I. W.; Shennib, H.; Hu, F.; Tayara, L.;
Giaid, A. Can. J. Physiol. Pharmacol. 2003, 81, 114.
4. Hull, M.; Lieb, K.; Fiebich, B. L. Curr. Med. Chem. 2002,
9, 83.
5. Teismann, P.; Vila, M.; Choi, D. K.; Tieu, K.; Wu, D. C.;
Jackson-Lewis, V.; Przedborski, S. Ann. N.Y. Acad. Sci.
2003, 991, 272.
O
12
11
MeS
O
O
O
e
O
O
O
H311C
S
6. Hausknecht, B.; Voelkl, S.; Riess, R.; Gauer, S.; Goppelt-
Struebe, M. Transplantation 2003, 76, 109.
S
O
14
13
7. Herschman, H. R.; Talley, J. J.; DuBois, R. Mol. Imaging
Biol. 2003, 5, 286.
8. McCarthy, T. J.; Sheriff, A. U.; Graneto, M. J.; Talley,
J. J.; Welch, M. J. J. Nucl. Med. 2002, 43, 117.
9. de Vries, E. F.; van Waarde, A.; Buursma, A. R.;
Vaalburg, W. J. Nucl. Med. 2003, 44, 1700.
10. Isakson, P. C.; Seibert, K.; Talley, J. J. PCT Int. Appl.
9714679, 1997; Chem. Abstr. 1997, 126, 343566.
11. Toyokuni, T.; Satyamurthy, N.; Herschman, H. R.;
Phelps, M. E.; Barrio, J. R. PCT. Int. Appl. 2003089013,
2003; Chem. Abstr. 2003, 139, 334913.
Scheme 3. Radiosynthesis of [11C]Rofecoxib. Reagents and condi-
tions: (a) 4-thiomethylphenylboronic acid, PdCl2(PPh3)2, CsF,
BnEt3N+Clꢀ, 3 d, 74%; (b) phenylboronic acid, PdCl2(PPh3)2, CsF,
BnEt3N+Clꢀ, 3 d, 71%; (c) m-CPBA, CH2Cl2, ꢀ30 ꢁC, 1 h, 93%; (d) (i)
(CF3CO)2O, 2,6-lutidine, CH3CN, ꢀ20 ꢁC, 1 h; (ii) butyryl chloride,
pyridine, CH2Cl2, 0 ꢁC, 30 min, 54% (two steps); (e) (i) [11C]CH3I,
pyrrolidine, DMF, rt, 5 min; (ii) Oxoneꢂ, MeOH/H2O (1:1), 70 ꢁC,
2 min, 20% (EOB).
12. Marnett, L. J.; Timofeevski, S.; Prudhomme, D. U.S.
Patent 2005002859, 2005; Chem. Abstr. 2005, 142, 100330.
13. Wust, F. R.; Hohne, A.; Metz, P. Org. Biomol. Chem.
2005, 3, 503.
14. Kumar, J. S. D.; Prabhakaran, J.; Underwood, M. D.;
Parsey, R. V.; Arango, V.; Majo, V. J.; Simpson, N. R.;
Arcement, J.; Cooper, A. R.; Van Heertum, R. L.; Mann,
J. J. Abstract of Papers, 226th National Meeting of the
American Chemical Society, New York, NY, 2003;
Abstract MEDI-375.
15. Kumar, J. S. D.; Underwood, M. D.; Prabhakaran, J.;
Parsey, R. V.; Arango, V.; Majo, V. J.; Simpson, N. R.;
Cooper, A. R.; Arcement, J.; Van Heertum, R. L.; Mann,
J. J. Abstract of Papers, 227th National Meeting of the
American Chemical Society, Philadelphia, PA, 2004;
Abstract MEDI-244.
The a,b-unsaturated c-butyrolactone ring in Rofecoxib
provided an unexpected challenge for its radiosynthesis.
The precursor for radiosynthesis was prepared by ini-
tially establishing the diaryl lactone ring in 12 by two
consecutive Suzuki couplings of mucobromic acid 11,
as shown in Scheme 3.25 Selective mono-oxidation of
12, Pummerer rearrangement, and protection of the
thiol group proceeded with an overall yield of 50% to
give the thiobutyrate ester 13. However, attempted
deprotection of the free thiol group by adding tetrabuty-
lammonium hydroxide resulted in the cleavage of
c-butyrolactone ring. A host of other mild bases also
failed to release the thiol group without destroying the
unsaturated lactone. The in situ deprotection and
methylation of the thiobutyrate ester was finally
achieved successfully by carrying out [11C]methylation
in the presence of excess of pyrrolidine in DMF at room
temperature.26 Oxidation with Oxoneꢂ proceeded as
expected to furnish [11C]Rofecoxib (14) in 20% yield
[(n = 3, SD = 4), based on 11C-CH3I at EOB].
16. Habeeb, A. G.; Rao, P. N. P.; Knaus, E. E. Drug Dev. Res.
2000, 51, 273.
17. Rane, A. M.; Miranda, E. I.; Soderquist, J. A. Tetrahedron
Lett. 1994, 35, 3225.
18. Pinchart, A.; Dallaire, C.; Van Bierbeek, A.; Gingras, M.
Tetrahedron Lett. 1999, 40, 5479.
19. Gryko, D. T.; Zhao, F.; Yasseri, A. A.; Roth, K. M.;
Bocian, D. F.; Kuhr, W. G.; Lindsey, J. S. J. Org. Chem.
2000, 65, 7356.
20. The disulfide could be converted to TMI by the cleavage
of S–S bond on treatment with aqueous solution of Na2S
nanohydrate in acetone followed by in situ addition of
methyl iodide to the resultant thiol and oxidation with
oxone in methanol–water.
In conclusion, we have designed a one-pot method for
the synthesis of 11C-labeled methylsulfone group from
the corresponding aryl thiol protected as the butyrate es-
ter. The methodology was successfully exploited for the
radiosynthesis of carbon-11 analogues of three highly
selective COX-2 inhibitors Rofecoxib, Etoricoxib, and
TMI in high radiochemical purity. In vivo studies with
these potential PET probes for imaging COX-2 expres-
sion are currently in progress.
21. Marcoux, J. F.; Corley, E. G.; Rossen, K.; Pye, P.; Wu, J.;
Robbins, M. A.; Davies, I. W.; Larsen, R. D.; Reider, P. J.
Org. Lett. 2000, 2, 2339.
22. 5-Chloro-3-(4-methanesulfinylphenyl)-60-methyl-[2,30]bipyri-
dine. A solution of thioether 6(147 mg, 0.45 mmol) in CH2Cl2
(2 mL) was cooled to ꢀ40 ꢁC and stirred vigorously. Then
a solution of m-CPBA (106 mg of 77 % water suspension,
0.47 mmol) in CH2Cl2 (2 mL) was added dropwise. The
mixture was stirred at ꢀ20 ꢁC for 40 min. Then Ca(OH)2
(60 mg, 0.81 mmol) and MgSO4 (200 mg) were added, and
stirring was continued for 30 min. After filtration and
evaporation, the resultant colorless oil was column chro-
matographed (4% MeOH in CH2Cl2) to yield the desired
sulfoxide 8 as a colorless puffy solid (130 mg, 84%).
Acknowledgments
The authors thank Dr. Bryan Roth and the NIMH–
PDSP program for the competitive receptor–transporter
assay of TMI, and Ms. Julie Arcement for her assistance
in the radiolabeling studies.
1
Compound 8: mp: 123 ꢁC; H NMR: d 2.54 (s, 3H), 2.75
(s, 3H), 7.07 (d, J = 8.0 Hz, 1H), 7.35–7.37 (m, 2H), 7.56
(dd, J = 8.0, 2.3 Hz, 1H), 7.61–7.63 (m, 2H), 7.74 (d,
J = 2.4 Hz, 1H), 8.42 (d, J = 2.1 Hz, 1H), 8.70 (d,
References and notes
1. Crosby, C. G.; DuBois, R. N. Expert Opin. Emerg. Drugs
2003, 8, 1.