Page 5 of 7
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
1
Isin, E. M.; Elmore, C. S.; Nilsson, G. N.; Thompson, R. A.; Weidolf, L. Use of Radiolabeled Compounds in Drug
Metabolism and Pharmacokinetic Studies. Chem. Res. Toxicol. 2012, 25, 532.
2 Lockley, W. J. S.; McEwen, A.; Cooke, R. Tritium: a coming of age for drug discovery and development ADME studies. J.
Label. Compd. Radiopharm. 2012, 55, 235.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
All commercial 14C compounds originate from [14C]barium carbonate (Ba14CO3), generated from prolonged neutron
3
irradiation of metal nitrides. See: (a) Jiang, B.; Zhai, S.; Wei, H.; Liu, Y.; Zeng, B. Preparation of high specific activity [14C]-
barium carbonate. Hedongli Gongcheng, 1997, 18, 86. (b) Davis W., Jr. Carbon-14 production in nuclear reactors. U.S.
Nuclear Regulatory Commission. January 1, 1977.
4
For a review on the uses of isotopes in drug discovery and development, see: Elmore, C. S.; Bragg, R. A. Isotope
chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 2015, 25, 167.
5
Late-stage carbon isotope exchange has limited precedent: (a) For examples of late-stage exchange of methyl-sulfones to
14C-labeled methyl-sulfones, see: Gauthier, Jr., D. R.; Yoshikawa, N. A General, One-Pot Method for the Synthesis of
Sulfinic Acids from Methyl Sulfones. Org. Lett. 2016, 18, 5994. (b) For Pd-catalyzed decarboxylative cyanation, see:
Loreau, O.; Georgin, D.; Taran, F.; Audisio, D. Palladium-catalyzed decarboxylative cyanation of aromatic carboxylic acids
using [13C] and [14C]-KCN. J. Label. Compd. Radiopharm. 2015, 58, 425. (c) For applications of 14C labeling multiwalled
labeled nanotubes, see: Georgin, D.; Czarny, B.; Botquin, M.; Mayne-L’Hermite, M.; Pinault, M.; Bouchet-Fabre, B.;
Carriere, M.; Poncy, J.; Chau, Q.; Maximilien, R.; Dive, V.; Taran, F. Preparation of 14C-Labeled Multiwalled Carbon
Nanotubes for Biodistribution Investigations. J. Am. Chem. Soc. 2009, 131, 14658. (d) For additional examples, see chapter
on Reconstitution Strategies: Voges, R.; Heys, J. R.; Moenius, T. in “Preparation of Compounds Labeled with Tritium and
Carbon-14,” John Wiley & Sons, Ltd, 2009, 479-521.
6
For recent advances in tritium labeling technology, see: (a) Yu, R. P.; Hesk, D.; Rivera, N.; Pelczer, I.; Chirik, P. J. Iron-
catalysed tritiation of pharmaceuticals. Nature 2016, 529, 195. (b) Loh, Y. Y.; Nagao, K.; Hoover, A. J.; Hesk, D.; Rivera, N.
R.; Colletti, S. L.; Davies, I. W.; MacMillan, D. W. C. Photoredox-catalyzed deuteration and tritiation of pharmaceutical
compounds. Science 2017, 358, 1182. (c) Koniarczyk, J. L.; Hesk, D.; Overgard, A.; Davies, I. W.; McNally, A. A General
Strategy for Site-Selective Incorporation of Deuterium and Tritium into Pyridines, Diazines, and Pharmaceuticals. J. Am.
Chem. Soc. 2018, 140, 1990. (d) Yang, H.; Dormer, P. G.; Rivera, N. R.; Hoover, A. J. Palladium(II)-Mediated C-H
Tritiation of Complex Pharmaceuticals. Angew. Chem. Int. Ed. 2018, 57, 1883.
7
(a) Wu, L.; Fang, X.; Liu, Q.; Jackstell, R.; Beller, M.; Wu, X.-F. Palladium-Catalyzed Carbonylative Transformation of
C(sp3)−X Bonds. ACS Catal. 2014, 4, 2977. (b) Fang, W.; Zhu, H.; Deng, Q.; Liu, S. Liu, X.; Shen, Y.; Tu, T. Design and
Development of Ligands for Palladium-Catalyzed Carbonylation Reactions. Synthesis 2014, 46, 1689.
8
La Higuera Macias, M.; Arndtsen, B. A. Functional Group Transposition: A Palladium-Catalyzed Metathesis of Ar−X σ‑
Bonds and Acid Chloride Synthesis. J. Am. Chem. Soc. 2018, 140, 10140.
9
Lee, Y. H.; Morandi, B. Metathesis-active ligands enable a catalytic functional group metathesis between aroyl chlorides
and aryl iodides. Nat. Chem. 2018, 10, 1016.
Elmore, C. S. The synthesis and use of [14C]carbon monoxide in Pd-catalyzed carbonylation reactions. J. Label. Compd.
10
Radiopharm. 2011, 54, 59.
11
Nielsen, D. U.; Neumann, K. T.; Lindhardt, A. T.; Skrydstrup, T. Recent developments in carbonylation chemistry using
[13C]CO, [11C]CO, and [14C]CO. J. Labelled Compd. Radiopharm. 2018, 61, ahead of print.
12
A typical reconstitution strategy starts from the available unlabeled carboxylic acid, utilizes a Curtius rearrangement,
Sandmeyer reaction, and then reintroduction of the carbonyl containing the 14C-label, typically requiring >5 chemical
transformations. For examples, see: (a) Zhang, A. S.; Ho, J. Z.; Braun, M. P. An efficient synthesis of carbon-14-labeled 6-
[2-(dimethylamino)ethyl]-14-(1-ethylpropyl)-5,6,7,8-tetrahydroindolo[2,1-a] [2,5]benzodiazocine-11-carboxylic acid using
Curtius rearrangement reaction as a key step. J. Label. Compd. Radiopharm. 2011, 54, 163. (b) Wheeler, W. J.; Kau, D. L.
K.; Bach, N. J. The synthesis of [2H], [3H], and [14C]‐labeled 8β‐[(methylthio)methyl]‐6‐propylergoline mesylate (pergolide
mesylate), a potent, long‐acting dopamine agonist. J. Label. Compd. Radiopharm. 1990, 28, 273. (c) Marzoni, G.; Wheeler,
W. J.; Garbrecht, W. L. [14C]–Radiolabeling of {[trans‐(8β)]‐6‐methyl‐1‐(1‐methylethyl) ergoline‐8‐carboxylic acid,
4‐methoxycyclohexyl ester (Z)‐2‐butenedioate [(1:1)]. A potent and selective 5ht2‐receptor antagonist. J. Label. Compd.
Radiopharm. 1988, 25, 429. (d) Sundaram, M. G. Synthesis of 2,3‐dihydroxybenzoic acid ‐ (carboxyl‐14C). J. Label. Compd.
Radiopharm. 1981, 18, 489.
13
The advantages of carbon isotope exchange at carboxylic acid centers have been recognized; however, these uncatalyzed
processes necessitate large excesses of precious radioactive reagents and extreme reaction temperatures thus are not practical
or tolerant of molecular complexity, see: (a) Charig, A.; Kinscherf, K.; Gargiullo, B.; Roman, S.; Connors, T. F.; Unkefer,
5
ACS Paragon Plus Environment