ORGANIC
LETTERS
2001
Vol. 3, No. 9
1265-1267
Stereoselective Synthesis of
(E)-4-Alkylidenecyclopent-2-en-1-ones by
a Tandem Ring Closure−Michael
Addition−Elimination
Roberto Ballini,* Giovanna Bosica, Dennis Fiorini, Maria Victoria Gil,† and
Marino Petrini*
Dipartimento di Scienze Chimiche, UniVersita` di Camerino, Via S. Agostino, 1. I-62032
Camerino, Italy, and Departamento de Quimica Organica, Facultad de Ciencias,
UniVersidad de Extremadura, 06071Badajoz, Spain
petrini@camserV.unicam.it
Received November 29, 2000
ABSTRACT
Reaction of (Z)-1,4-diketones with various functionalized nitroalkanes in the presence of DBU gives 4-alkylidenecyclopent-2-en-1-ones with E
selectivity. A cyclopentadienone intermediate is probably formed by intramolecular aldol condensation, and this reacts with a nitroalkane
giving a Michael addition−elimination.
The cyclopentenone ring is one of the most recurring
structural unit in targets of relevant practical interest.1
Functionalized cyclopentenones are also important building
blocks that provide an efficient entry to substituted cyclo-
pentanone frameworks.2 The classical approach for the
synthesis of cyclopentenones makes use of an intramolecular
aldol condensation of 1,4-dicarbonyl derivatives.3 This
strategy is particularly effective when 1,4-keto aldehydes or
symmetrical 1,4-diketones are used as substrates but un-
doubtedly poses some chemoselectivity problems with
unsymmetrical diketo derivatives. To overcome this draw-
back, a number of alternative protocols involving multicom-
ponent couplings,4 rearrangements,5 and other transforma-
tions6 have been devised. A practical synthetic route to
4-substituted cyclopentenones may exploit the reactivity of
cyclopentadienones I that react with nucleophilic reagents
giving the corresponding addition products II (Scheme 1).
Unfortunately, cyclopentadienones are rather unstable com-
pounds, and this prevents their direct use although a
“masked” form of these reactive substrates has found some
synthetic applications.7
† Universidad de Extremadura.
(1) (a) Mikolajczyc, M.; Mikina, M.; Zurawinski, R. Pure Appl. Chem.
1999, 71, 473-480. (b) Collins, P. E.; Djuric, S. W. Chem. ReV. 1993, 93,
1533-1564. (c) Noyori, R.; Suzuki, M. Angew. Chem., Int. Ed. Engl. 1984,
23, 847-876.
(2) For some recent references, see: (a) Pastor, I. M.; Yus, M.
Tetrahedron Lett. 2000, 41, 1589-1592. (b) Yakura, T.; Tanaka, K.;
Iwamoto, M.; Nameki, M.; Ikeda, M. Synlett 1999, 1313-1315. (c) Keller,
E.; Maurer, J.; Naasz, R.; Shader, T.; Meetsma, A.; Feringa, B. L.
Tetrahedron: Asymmetry 1998, 9, 2409-2413. (d) Grieco, P. A.; May, S.
A.; Kaufman, M. D. Tetrahedron Lett. 1998, 39, 7047-7050. (e) Yan, M.;
Yang, L.-W.; Wong, K.-Y.; Chan, A. S. C. Chem. Commun. 1999, 11-12.
(f) Kondo, Y.; Kon-i, K.; Iwasaki, A.; Ooi, T.; Maruoka, K. Angew. Chem.,
Int. Ed. Engl. 2000, 39, 414-416.
(4) (a) Trost, B. M.; Pinkerton, A. B. Org. Lett. 2000, 2, 1601-1603.
(b) Rajesh, T.; Perisamy, M. Organometallics 1999, 18, 5709-5712. (c)
Langer, P.; Ko¨hler, V. Org. Lett. 2000, 2, 1597-1599.
(5) (a) Iwasawa, N. Synlett 1999, 13-24. (b) Mahnteau-Betzer, F.;
Ghosez, L. Tetrahedron Lett. 1999, 40, 5183-5186.
(6) (a) Balaczewsky, P.; Mikolajczyk, M. Org. Lett. 2000, 2, 1153-
1155. (b) Sakai, A.; Aoyama, T.; Shioiri, T. Tetrahedron Lett. 2000, 41,
6859-6863.
(7) (a) Sugahara, T.; Ogasawara, K. Synlett 1999, 419-420. (b) Dols,
P. P. M. A.; Klunder, A. J. H.; Zwanenburg, B. Tetrahedron 1994, 50,
8515-8538.
(3) Piancatelli, G.; D’Auria, M.; D’Onofrio, F. Synthesis 1994, 867-
889.
10.1021/ol0069352 CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/03/2001