10.1002/anie.201903215
Angewandte Chemie International Edition
COMMUNICATION
Steward, F. F. Fleming, Angew. Chem. Int. Ed. 2017,
56, 7257-7260.
S. Seel, G. Dagousset, T. Thaler, A. Frischmuth, K.
Karaghiosoff, H. Zipse, P. Knochel, Chem. Eur. J.
2013, 19, 4614-4622.
Keywords: transnitrilation • anion-relay strategy • alkyl nitriles •
alkyl lithium reagents • fragmentation
[12]
[13]
a) R. Smiley, C. Arnold, J. Org. Chem. 1960, 25, 257-
258; b) F. L. Cook, C. W. Bowers, C. L. Liotta, J. Org.
Chem. 1974, 39, 3416-3418; c) J. E. Shaw, D. Y. Hsia,
G. S. Parries, T. K. Sawyer, J. Org. Chem. 1978, 43,
1017-1018.
For comparison, (3-iodobutyl)benzene 5e was
converted to (3-cyanobutyl)benzene in 50% yield via
nucleophilic cyanation using NaCN. This nitrile product
could be converted to 6e via deprotonation/alkylation.
The overall yield for the synthetic sequence is 45%.
See the Supporting Information for details.
[1]
[2]
a) H. M. L. Davies, E. J. Sorensen, Chem. Soc. Rev.
2009, 38, 2981-2982; b) J. Li, M. D. Eastgate, Org.
Biomol. Chem. 2015, 13, 7164-7176; c) T. Newhouse,
P. S. Baran, R. W. Hoffmann, Chem. Soc. Rev. 2009,
38, 3010-3021; d) E. Ruijter, R. Scheffelaar, R. V. A.
Orru, Angew. Chem. Int. Ed. 2011, 50, 6234-6246.
a) Z. Rappoport, Chemistry of the Cyano Group, Wiley,
London, 1970; b) R. C. Larock, Comprehensive
Organic Transformations: A Guide to Functional Group
Preparations, Wiley, New York, 1989; c) G. Dilauro, M.
Dell'Aera, P. Vitale, V. Capriati, F. M. Perna, Angew.
Chem. Int. Ed. 2017, 56, 10200-10203; d) M. S. M.
Pearson-Long, F. Boeda, P. Bertus, Adv. Synth. Catal.
2017, 359, 179-201.
[14]
[15]
E. C. Ashby, T. N. Pham, J. Org. Chem. 1987, 52,
1291-1300.
See the Supporting Information for details.
[16]
[17]
a) A. Gómez-SanJuan, N. Sotomayor, E. Lete,
Beilstein J. Org. Chem. 2013, 9, 313-322; b) S.
Norsikian, I. Marek, S. Klein, J. F. Poisson, J. F.
Normant, Chem. Eur. J. 1999, 5, 2055-2068; c) X. Wei,
P. Johnson, R. J. K. Taylor, J. Chem. Soc., Perkin
Trans. 1 2000, 1109-1116; d) X. Wei, R. J. K. Taylor,
Chem. Commun. 1996, 187-188.
a) M. Schlosser, in Pure Appl. Chem., Vol. 60, 1988, p.
1627; b) P. Fleming, D. F. O’Shea, J. Am. Chem. Soc.
2011, 133, 1698-1701; c) C. Unkelbach, H. S.
Rosenbaum, C. Strohmann, Chem. Commun. 2012, 48,
10612-10614; d) A. Manvar, P. Fleming, D. F. O’Shea,
J. Org. Chem. 2015, 80, 8727-8738.
[3]
[4]
F. F. Fleming, L. Yao, P. C. Ravikumar, L. Funk, B. C.
Shook, J. Med. Chem. 2010, 53, 7902-7917.
a) Science of Synthesis: Three Carbon-Heteroatom
Bonds: Nitriles, Isocyanides, and Derivatives, Vol. 19
(Ed.: S. Murahashi), Georg Thieme, Stuttgart, 2004; b)
T. Schareina, A. Zapf, M. Beller, Chem. Commun.
2004, 1388-1389.
[18]
[5]
a) J. L. E. Erickson, M. M. Barnett, J. Am. Chem. Soc.
1935, 57, 560-562; b) J. T. Reeves, C. A. Malapit, F. G.
Buono, K. P. Sidhu, M. A. Marsini, C. A. Sader, K. R.
Fandrick, C. A. Busacca, C. H. Senanayake, J. Am.
Chem. Soc. 2015, 137, 9481-9488; c) C. A. Malapit, I.
K. Luvaga, J. T. Reeves, I. Volchkov, C. A. Busacca, A.
R. Howell, C. H. Senanayake, J. Org. Chem. 2017, 82,
4993-4997; d) C. A. Malapit, J. T. Reeves, C. A.
Busacca, A. R. Howell, C. H. Senanayake, Angew.
Chem. Int. Ed. 2016, 55, 326-330; e) P. Yu, B. Morandi,
Angew. Chem. Int. Ed. 2017, 56, 15693-15697; f) X.
Fang, P. Yu, B. Morandi, Science 2016, 351, 832-836;
g) X. Fang, P. Yu, G. Prina Cerai, B. Morandi, Chem.
Eur. J. 2016, 22, 15629-15633; h) A. M. Nauth, T.
Opatz, Org. Biomol. Chem. 2019, 17, 11-23; i) J.
Schörgenhumer, M. Waser, Org. Chem. Front. 2016, 3,
1535-1540.
[6]
a) A. B. Smith, W.-S. Kim, Proc. Natl. Acad. Sci. U.S.A.
2011, 108, 6787-6792; b) I. I. I. A. B. Smith, W. M.
Wuest, Chem. Commun. 2008, 5883-5895.
[7]
[8]
N. W. M. Michel, A. D. M. Jeanneret, H. Kim, S. A. L.
Rousseaux, J. Org. Chem. 2018, 83, 11860-11872.
a) G. B. Gregory, A. L. Johnson, W. C. Ripka, J. Org.
Chem. 1990, 55, 1479-1483; b) S. S. Kulp, A.
Romanelli, Org. Prep. Proced. Int. 1992, 24, 7-12; c)
J.-M. R. Mattalia, Beilstein J. Org. Chem. 2017, 13,
267-284.
[9]
This process is reminiscent of the isodesmic
transformations found in recent examples of shuttle
catalysis. See B. N. Bhawal, B. Morandi, Angew.
Chem. Int. Ed. doi: 10.1002/anie.201803797.
[10]
[11]
F. Leroux, M. Schlosser, E. Zohar, I. Marek, in
PATAI'S Chemistry of Functional Groups, 2009.
a) D. Nath, F. F. Fleming, Angew. Chem. Int. Ed. 2011,
50, 11790-11793; b) D. Nath, F. F. Fleming, Chem.
Eur. J. 2013, 19, 2023-2029; c) D. Nath, M. C. Skilbeck,
I. Coldham, F. F. Fleming, Org. Lett. 2014, 16, 62-65;
d) X. Yang, D. Nath, F. F. Fleming, Org. Lett. 2015, 17,
4906-4909; e) X. Yang, D. Nath, M. R. Gau, O. W.
This article is protected by copyright. All rights reserved.