ORGANIC
LETTERS
2001
Vol. 3, No. 24
3943-3946
Diastereoselective Addition of Allylzinc
Bromide to Imines Derived from
(R)-Phenylglycine Amide
Marcel van der Sluis,† Jan Dalmolen,‡ Ben de Lange,§ Bernard Kaptein,§
,†
,§
Richard M. Kellogg,* and Quirinus B. Broxterman*
Syncom B.V., Kadijk 3, 9747 AT Groningen, The Netherlands, UniVersity of
Groningen, Department of Organic and Molecular Inorganic Chemistry, Nijenborgh 4,
9747 AG Groningen, The Netherlands, and DSM Fine Chemicals-AdVanced Synthesis
and Catalysis, P.O. Box 18, 6160 MD Geleen, The Netherlands
Received October 1, 2001
ABSTRACT
The highly diastereoselective addition of allylzinc bromide to imines derived from (R)-phenylglycine amide is reported. Homoallylamines with
high enantiomeric purity are obtained from the adducts in three steps on removal of the chiral auxiliary by means of a nonreductive protocol.
Removal of the auxiliary by hydrogenation leads to the saturated amines, also in high enantiomeric purity.
Chiral homoallylamines are valuable synthons for the
preparation of topically interesting compounds such as
â-amino acids, 1,3-amino alcohols, and 1-amino-3,4-
epoxides.1 Recently,2,3 homoallylamines proved to be key
building blocks for the preparation of some pyrrolidines and
piperidines via the ring-closing metathesis approach. The
most frequently employed methodology for the synthesis of
homoallylamines is the allylation of imines by allyl Si, Sn,
Sm, Li, Mg, Zn, Ce, Cr, B, or Cr reagents.4
as R-arylethylamines,5 â-amino alcohols, â-alkoxy amines,
and R-amino acid esters.6 A common feature of the latter
three auxiliaries is the presence of a second heteroatom,
which is capable of rigidifying the transition state of the 1,2-
(4) (a) Enders, D.; Reinhold, U. Tetrahedron: Asymmetry 1997, 8, 1895.
(b) Jones, P.; Knochel, P. J. Org. Chem. 1999, 64, 186. (c) Wang, D.-K.;
Zhou, Y.-G.; Hou, X.-L.; Dai, L.-X. J. Org. Chem. 1999, 64, 4233. (d)
Nakamura, K.; Nakamura, H.; Yamamoto, Y. J. Org. Chem. 1999, 64, 2614.
(e) Nakamura, H.; Nakamura, K.; Yamamoto, Y. J. Am. Chem. Soc. 1998,
120, 4242. (f) Yamamoto, Y.; Asao, N. Chem. ReV. 1993, 93, 2207. (g)
Wang, D.-K.; Dai, L.-X.; Hou, X.-L.; Zhang, Y. Tetrahedron Lett. 1996,
37, 4187. (h) Negoro, N.; Yanada, R.; Okaniwa, M.; Yanada, K.; Fujita, T.
Synlett 1998, 835. (i) Itsuno, S.; Yokoi, A.; Kuroda, S. Synlett 1999, 1987.
(j) El-Shehawy, A. A.; Omara, M. A.; Ito, K.; Itsuno, S. Synlett 1998, 367.
(k) Yanada, R.; Negoro, N.; Okaniwa, M.; Ibuka, T. Tetrahedron 1999,
55, 13947. (l) Fang, X.; Johannsen, M.; Yao, S.; Gatherhood, N.; Hazel, R.
G.; Jørgensen, K. A. J. Org. Chem. 1999, 64, 4844.
(5) Juaristi, E.; Leon-Romo, J. L.; Reyes, A.; Escalante, J. Tetrahedron:
Asymmetry 1999, 10, 2441.
(6) (a) Alvaro, G.; Martelli, G.; Savoia, D. J. Chem. Soc., Perkin Trans.
1998, 1, 777. (b) Bocoum, A.; Savoia, D.; Umani-Ronchi, A. J. Chem.
Soc., Chem. Commun. 1993, 1542 (b) Razavi, H.; Polt, R. J. Org. Chem.
2000, 65, 5693.
High 1,3-asymmetric induction during the addition can be
achieved by using imines derived from chiral auxiliaries such
† Syncom B.V..
‡ University of Groningen.
§ DSM Fine Chemicals-Advanced Synthesis and Catalysis.
(1) Laschat, S.; Kunz, H. J. Org. Chem. 1991, 56, 5883.
(2) Felpin, F.-X.; Girard, S.; Vo-Thanh, G.; Robins, R. J.; Villieras, J.;
Lebreton, J. J. Org. Chem. 2001, 66, 6305.
(3) Wright, D. L.; Schulte, J. P., II; Page, M. A. Org. Lett. 2000, 2,
1847.
10.1021/ol016840f CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/03/2001