cancer assays carried out on three human cell lines; lung (NCI-
H460), breast (MCF7) and CNS (SF-268), exhibit significant
anticancer activity for these compounds as illustrated in Table
1.
In summary, the synthesis of 1a–c† reported here describes
the importance of non-covalent interactions for increasing the
DNA binding affinity and potent antitumour activity of the non-
cross-linking mixed imine–amide PBD dimers. These findings
may allow researchers to design newer analogues with
improved therapeutic potential, particularly for antitumour
activity. The sequence selectivity, endonuclease activity and
detailed anticancer activity of these non-cross-linking PBD
compounds will be reported elsewhere.
We thank the National Cancer Institute, Maryland for the
primary anticancer assay in human cell lines. We are also
thankful to CSIR, New Delhi for the award of research
fellowship to two of us (N. L. and G. R.).
Notes and references
† Selected data for compound 1a: dH(200 MHz, DMSO-d6 + CDCl3)
1.89–2.5 (m, 10H), 3.4–4.05 (m, 13H), 4.1–4.4 (m, 3H), 6.6 (s, 1H), 6.82 (s,
1H), 7.4 (s, 1H), 7.5 (s, 1H), 7.65 (d, 1H), 9.9 (s, 1H, NH exchangeable);
nmax (KBr)/cm21 3450–3460 (br), 2993, 2345, 1686, 1654, 1606, 1518,
1491, 1437, 1384, 1265, 1228, 1119, 1021, 839, 784; [a]D30 +202.6 (c 0.5,
CHCl3); m/z (FAB): 549 (M + H)+ (calc. for C29H31N4O7).
Scheme 2 Reagents and conditions: i, Br(CH2)nBr, K2CO3, CH3COCH3,
reflux, 48 h, 82–86%; ii, SnCl4–HNO3, CH2Cl2, 225 °C, 5 min, 88–91%;
iii, 1 M LiOH, THF, MeOH, H2O (3+1+1), rt, 12 h, 89–93%; iv, SOCl2 then
DMF, THF, H2O, 2(S)-pyrrolidinecarbaldehyde diethyl thioacetal, Et3N,
3 h, 89–92%; v, 6, K2CO3, CH3COCH3, reflux, 48 h, 85–90%; vi,
SnCl2·2H2O, MeOH, reflux, 40 min, 80–85%; vii, HgCl2, CaCO3, CH3CN–
H2O (4+1), 3–8 h, 55–61%.
1 P. B. Dervan, Science, 1986, 232, 464.
2 D. E. Thurston and A. S. Thompson, Chem. Br., 1990, 26, 767.
3 S. White, J. W. Szewczyk, J. M. Turner, E. E. Baird and P. B. Dervan,
Nature, 1998, 391, 468.
4 S. Neidle and D. E. Thurston, New Targets for Cancer Chemotherapy,
ed. D. J. Kerr and P. Workman, CRC Press, London, 1994, p. 159.
5 D. E. Thurston, in Molecular Aspects of Anticancer Drug–DNA
Interactions, ed. S. Neidle and M. J. Waring, Macmillan, London, 1993,
p. 54.
Table 1 Thermal denaturation with calf thymus DNA,a at a [PBD]+[DNA]
molar ratio of 1+5b and in vitro one dose primary anticancer assayc in the
NCI-H460, MCF 7 and SF-268 for 1a–c
6 R. L. Petrusek, G. L. Anderson, T. F. Garner, Q. L. Fannin, D. J. Kaplan,
S. G. Zimmer and L. H. Hurley, Biochemistry, 1981, 20, 111.
7 M. S. Puvvada, S. A. Forrow, J. A. Hartley, P. Stephenson, I. Gibson,
T. C. Jenkins and D. E. Thurston, Biochemistry, 1997, 36, 2478.
8 D. E. Thurston, D. S. Bose, A. S. Thompson, P. W. Howard, A. Leoni,
S. J. Croker, T. C. Jenkins, S. Neidle, J. A. Hartley and L. H. Hurley,
J. Org. Chem., 1996, 61, 8141.
9 S. J. Gregson, P. W. Howard, T. C. Jenkins, L. R. Kelland and D. E.
Thurston, J. Chem. Soc., Chem. Commun., 1999, 797.
10 G. B. Jones, C. L. Davey, T. C. Jenkins, A. Kamal, G. G. Kneale, S.
Neidle, G. D. Webster and D. E. Thurston, Anticancer Drug Design,
1990, 5, 249.
Induced DTm/°Cab after incubation
at 37 °C for
Growth percentages
(Lung)
(Breast) (CNS)
Compound
0 h
18 h NCI-H460
MCF7
SF-268
1a
1b
1c
DC-81(3)
DSB-120
6.5
5.0
7.0
8.5 216
4
10
241
7
11
281
221
—
14.0 17.0 239
0.3
10.2 15.4
0.7
—
—
—
—
—
a For CT-DNA at pH 7.00 ± 0.01, DTm = 66.5 °C ± 0.01 (mean value from
60 separate determinations), all DTm values ± 0.1–0.2 °C. b For a 1+5 molar
ratio of [ligand]+[DNA], where CT-DNA concentration = 100 mM in
aqueous buffer [10 mM sodium phosphate + 1 M EDTA, pH 7.00 ± 0.01].
c One dose of 1a–c at 1024 molar concentration.
11 P. G. Baraldi, G. Balboni, B. Cacciari, A. Guiotto, S. Manfridini, R.
Romagnoli, G. Spalluto, D. E. Thurston, P. W. Howard, N. Bianchi, C.
Rutigliano, C. Mischiati and R. Gambari, J. Med. Chem., 1999, 42,
5131.
12 Y. Damayanthi, B. S. P. Reddy and J. W. Lown, J. Org. Chem., 1999,
64, 290.
13 A. Kamal, P. W. Howard, B. S. N. Reddy, B. S. P. Reddy and D. E.
Thurston, Tetrahedron, 1997, 53, 3223.
14 A. Kamal, Y. Damayanthi, B. S. N. Reddy, B. Lakshminarayana and
B. S. P. Reddy, Chem. Commun., 1997, 1015.
15 A. Kamal, M. V. Rao and B. S. N. Reddy, Khim. Geterosilil. Soedin.
Chem. (Chem. Heterocycl. Compd. Engl. Transl.), 1998, 12, 1588.
16 A. Kamal, E. Laxman, N. Laxman and N. V. Rao, Bioorg. Med. Chem.
Lett., 2000, 10, 2311.
17 D. E. Thurston, V. S. Murty, D. R. Langley and G. B. Jones, Synthesis,
1990, 81.
exhibits a DTm of 0.7 °C. This demonstrates that compound 1c
containing a single imino functionality has a very significant
DNA binding affinity. To the best of our knowledge, this is the
first synthetic non-cross-linking molecule to exhibit a remark-
able DNA binding effect similar to the naturally occurring
sibiromycin (DTm = 16.3 °C at 18 h).11 These data indicates
that non-covalent interactions play an important role for the
enhancement of DNA binding affinity. The preliminary anti-
438
Chem. Commun., 2001, 437–438