ORGANIC
LETTERS
2013
Vol. 15, No. 5
984–987
P‑Directed Borylation of Phenols
ꢀ
Clement Cazorla, Timothy S. De Vries, and Edwin Vedejs*
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109,
United States
Received November 20, 2012
ABSTRACT
Internal borylation occurs upon activation of aryl di-isopropylphosphinite boranes with HNTf2 to give heterocyclic intermediates that can be
reductively quenched to afford 6 or treated with KHF2 to give the phenolic potassium aryl trifluoroborate salts 10. The latter salts are useful for
Pd-catalyzed coupling with aryl iodides under Molander conditions, provided that precautions are taken to remove the KNTf2 byproduct from the
preceding KHF2 step.
Arylboron derivatives are valuable intermediates in
organic synthesis due to their important potential for
CꢀC bond formation.1 Simple arylboronic acid deriva-
tives are usually prepared by treating an arylmagnesium
or -lithium reagent with (RO)3B (R = Me, iPr)2 or by the
reaction ofelectrophilicboraneswithelectron-richarenes.3
In the case of the highly electrophilic BCl3, modified
FriedelꢀCrafts procedures are effective using aluminum
metal (Muetterties borylation)3b,c or a carefully selected
amine additive3d to scavenge the HCl byproduct and to
help generate reactive electrophilic intermediates in situ.
Recently, transition metal catalyzed borylation procedures
have also become important.4 These methods are sensitive
to steric effects or internal complexation effects and often
allow efficient borylation with complementary regioselec-
tivity compared to the electrophilic borylations.
been known, including interesting cases of nitrogen- or
oxygen-directed borylation.5,6 Surprisingly, examples of
this chemistry have been reported over a very broad range
of temperatures (ranging from 05f to 200 °C5a). We became
intrigued by this variation in borylation conditions and
suspected that the difference between facile and difficult
borylations may reflect differences in reagents and activation
procedures that influence the relative ease of borenium cation
formation.7 Accordingly, a program was initiated in our
laboratory to investigate heteroatom-directed borylation un-
der conditions expected to promote the generation of tethered
borenium cations as potential borylation intermediates.
We have already reported relevant N-directed borylations8
(5) N-Directed borylation:(a) Dewar, M. J. S.;Kubba, V. P.; Pettit, R.
€
J. Chem. Soc. 1958, 3073. (b) Koster, R.; Iwasaki, K.; Hattori, S.; Morita,
€
Y. Liebigs Ann. Chem. 1968, 720, 23. (c) Muller, B. W. Helv. Chim. Acta
Intramolecular adaptations of Muetterties borylation
directed by tethered heteroatom substituents have long
1978, 61, 325. Grassberger, M. A.; Turnowsky, F.; Hildebrandt, J.
J. Med. Chem. 1984, 27, 947. (d) Grassberger, M. A. Liebigs Ann. Chem.
1985, 683. (e) Boldyreva, O. G.; Dorokhov, V. A.; Mikhailov, B. M. Izv.
Akad. Nauk, Ser. Khim. 1985, 2, 428. (f) Allaoud, S.; Frange, B. Inorg.
Chem. 1985, 24, 2520. (g) Ganaev, A. M.; Nagy, S. M.; Salnikov, G. E.;
Shubin, V. G. Chem. Commun. 2000, 1587. (h) Ashton, P. R.; Harris,
K. D. M.; Kariuki, B. M.; Philp, D.; Robinson, J. M. A.; Spencer, N.
J. Chem. Soc., Perkin Trans. 2 2001, 2166. (i) Lee, G. T.; Prasad, K.;
(1) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(b) Ishiyama, T.; Miyaura, N. Chem. Rec. 2004, 3, 271.
(2) (a) Khotinsky, E.; Melamed, M. Chem. Ber 1909, 42, 3090.
(b) Sharp, M. J.; Snieckus, V. Tetrahedron Lett. 1985, 49, 5997. (c) Snieckus,
V. Chem. Rev. 1990, 90, 879.
ꢁ
Repic, O. Tetrahedron Lett. 2002, 43, 3255. (j) Niu, L.; Yang, H.; Wang,
(3) (a) Hurd, D. T. J. Am. Chem. Soc. 1948, 70, 2053. (b) Muetterties,
E. L. J. Am. Chem. Soc. 1960, 82, 4163. (c) Muetterties, E. L.; Tebbe,
F. N. Inorg. Chem. 1968, 7, 2663. (d) Del Grosso, A.; Helm, M. D.;
Solomon, S. A.; Caras-Quintero, D.; Ingleson, M. J. Chem Commun.
2011, 47, 12459.
(4) (a) Review: Hartwig, J. F. Acc. Chem. Res. 2012, 45, 864. (b)
Chotana, G. A.; Rak, M. A.; Smith, M. R., III. J. Am. Chem. Soc. 2005,
127, 10539 and references therein. (c) Boebel, T. A.; Hartwig, J. F. J. Am.
Chem. Soc. 2008, 130, 7534. (d) For other leading references for transition-
metal-catalyzed borylation ortho to heteroatoms, see: Yamazaki, K.;
Kawamorita, S.; Ohmiya, H.; Sawamura, M. Org. Lett. 2010, 12, 3978.
Kawamorita, S.; Miyazaki, T.; Ohmiya, H.; Tomohiro, I.; Sawamura,
M. J. Am. Chem. Soc. 2011, 133, 19310. Xiao, B.; Li, Y.-M.; Liu, Z.-J.;
Yang, H.-Y.; Fu, Y. Chem. Commun. 2012, 48, 4854.
R.; Fu, H. Org. Lett. 2012, 14, 2618.
(6) Miscellaneous directed borylations: (a) Dewar, M. J. S.; Dietz, R.
J. Chem. Soc. 1960, 1344. (b) Dewar, M. J. S.; Kaneko, C.; Bhattacharjee,
M. K. J. Am. Chem. Soc. 1962, 84, 4884. (c) Davis, F. A.; Dewar, M. J. S.
J. Am. Chem. Soc. 1968, 90, 3511. (d) Maringgele, W.; Meller, A.;
Noltemeyer, M.; Sheldrick, G. M. Z. Anorg. Allg. Chem. 1986, 536, 24.
(e) Arcus, V. L.; Main, L.; Nicholson, B. K. J. Organomet. Chem. 1993,
460, 139. (f) Zhou, Q. J.; Worm, K.; Dolle, R. E. J. Org. Chem. 2004, 69,
5147.
(7) De Vries, T. S.; Prokofjevs, A.; Vedejs, E. Chem. Rev. 2012,
112, 4246.
(8) De Vries, T. S.; Prokofjevs, A.; Vedejs, E. J. Am. Chem. Soc. 2009,
131, 14679.
r
10.1021/ol303203m
Published on Web 03/01/2013
2013 American Chemical Society