3674 J. Phys. Chem. B, Vol. 105, No. 17, 2001
Leventis et al.
(23) (a) Leventis, N.; Gao, X. J. Electroanal. Chem. 2001, 500, 78. (b)
Amatore, C.; Bonhomme, F.; Bruneel, J.-L.; Servant, L.; Thouin, L. J.
Electroanal. Chem. 2000, 484, 1. (c) Rongfeng, Z.; Evans, D. H. J.
Electroanal. Chem. 1995, 385, 201.
(24) Efange, S. M. N.; Michelson, R. H.; Remmel, R. P.; Boudreau, R.
J.; Dutta, A. K.; Freshler, A. J. Med. Chem. 1990, 33, 3133.
(25) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett.
1975, 50, 4467. (b) Takahashi, S.; Kuroyama, Y.; Sonogashira, K.; Hagihara,
N. Synthesis 1980, 627.
References and Notes
(1) Feoktistov, L. G. In Organic Electrochemistry; 2nd ed.; Baizer,
M. M., Lund, H., Eds.; Marcel Dekker: New York, 1983; p 315.
(2) (a) Stocker, J. H.; Jenevein, R. M.; Kern, D. H. J. Org. Chem.
1969, 34, 2810. (b) Rudd, E. J.; Conway, B. E. Trans. Faraday Soc. 1971,
67, 440. (c) Nadjo, L.; Saveant, J. M. J. Electroanal. Chem. 1973, 44, 327.
(d) van Tilborg, W. J. M.; Smit, C. J. J. R. Neth. Chem. Soc. 1979, 98,
532. (e) Swartz, J. E.; Mahachi, T. J.; Kariv-Miller, E. J. Am. Chem. Soc.
1988, 110, 3622. (f) Tanko, J. M.; Drumright, R. E. J. Am. Chem. Soc.
1992, 114, 1844. (g) Mattiello, L.; Rampazzo, L. J. Chem. Soc., Perkin
Trans. 1993, 2243. (h) Liotier, E.; Mousset, G. Mousty, C. Can J. Chem.
1995, 73, 1488.
(3) (a) Elving, P. J.; Leone, J. T. J. Am. Chem. Soc. 1958, 80, 1021.
(b) Wawzonek, S.; Gundersen, A. J. Electrochem. Soc. 1960, 107, 537.
(4) (a) Hermolin, J.; Kopilov, J.; Gileadi, E. J. Electroanal. Chem. 1976,
71, 245. (b) Kopilov, J.; Shatzmiller, S.; Kariv, E. Electrochim. Acta 1976,
21, 535. (c) Kopilov, J.; Kariv, E.; Miller, L. L. J. Am. Chem. Soc. 1977,
99, 3450.
(26) Back, K.; Huenig, S.; Reinold, P. Tetrahedron 1988, 44, 3295.
(27) (a) Streitweiser, A., Jr.; Reuben, D. M. E. J. Am. Chem. Soc. 1971,
93, 1794. (b) Patrick, T.; Disher, J. M.; Probst, W. J. J. Org. Chem. 1972,
37, 4467.
(28) Smith, M. B.; March, J. March’s AdVanced Organic Chemistry.
Reactions, Mechanisms, and Structure, 5th ed.; John Wiley and Sons: New
York, 2001, (a) p 330; (b) p 1217; (c) p 368; (d) p 98.
(29) Graham Solomons, T. W. Solomons Organic Chemistry; 6th ed.;
John Wiley and Sons: New York, 1966; p 98.
(5) Lehninger, A. L. Biochemistry, 2nd ed.; Worth Publishers: New
York, 1978; p 494.
(30) Munavalli, S.; Poziomek, E. J.; Landis, W. G. Heterocycles 1986,
24, 1883.
(6) Monk, P. M. S. The Viologens: Physicochemical Properties,
Synthesis and Applications of the Salts of 4,4′-Bipyridine; John Wiley and
Sons: New York, 1998.
(7) (a) Leventis, N.; Chen, M.; Liapis, A. I.; Johnson, J. W.; Jain, A.
J. Electrochem. Soc. 1998, 145, L55. (b) Leventis, N.; Gao, X. J. Phys.
Chem. B 1999, 103, 5832.
(8) (a) Imahori, H.; Norieda, H.; Nishimura, Y.; Yamazaki, I.; Higuchi,
K.; Kato, N.; Motohiro, T.; Yamada, H.; Tamaki, K.; Arimura, M.; Sakata,
Y. J. Phys. Chem. B 2000, 104, 1253. (b) Fukushima, M.; Tatsumi, K.;
Tanaka, S.; Nakamura, H. EnViron. Sci. Technol. 1998, 32, 3948. (c)
Moretto, L. M.; Ugo, P.; Zanata, M.; Guerriero, P.; Martin, C. R. Anal.
Chem. 1998, 70, 2163. (d) Yuan, R.; Watanabe, S.; Kuwabata, S.;
Yoneyama, H. J. Org. Chem. 1997, 62, 2494. (e) Nakamura, Y.; Kamon,
N.; Hori, T. Chem. Soc. Jpn. 1989, 62, 551.
(31) (a) Cavallini, G.; Milla, E.; Grumelli, E.; Ravenna, F.; Grasso, I.
Farmaco, Ed. Sci. 1958, 12, 853. (b) Breen, M. P.; Bojanowski, E. M.;
Cipolle, R. J.; Dunn, W. J., III.; Frank, E.; Gearien, J. E. J. Pharm. Sci.
1973, 62, 847. (c) McCaustland, D. J.; Chien, P.-L.; Burton, W. H.; Cheng,
C. C. J. Med. Chem. 1974, 17, 993. (d) Ho¨gberg, T.; Ulff, B.; Renyi, A.
L.; Ross, S. B. J. Med. Chem. 1981, 24, 1499. (e) Ba¨ckvall, J.-E.; Nordberg,
R. E.; Nystro¨m, J.-E.; Ho¨gberg, T.; Ulff, B. J. Org. Chem. 1981, 46, 3479.
(f) Earley, J. V.; Gilman, N. W. Synth. Commun. 1985, 15, 1271. (g)
Carvalho, I.; Miller, J. Heterocycl. Commun. 1995, 1, 403. (h) Takemoto,
M.; Yamamoto, Y.; Achiwa, K. Chem. Pharm. Bull. 1996, 44, 853.
(32) (a) Wolffenstein, R.; Hartwich, F. Chem. Ber. 1915, 48, 2043. (b)
Mirek, J. Zesz. Nauk. Uniw. Jagiellon., Pr. Chem. 1965, 10, 61. Chem.
Abstr. 1967, 66, 37125h. (c) Carmellino, M. L.; Pagani, G.; Pregnolato,
M.; Terreni, M. Pestic. Sci. 1995, 45, 227.
(9) Bookbinder, D. C.; Wrighton, M. S. J. Electrochem. Soc. 1983,
130, 1080.
(33) (a) Crook, K. E.; McElvain, S. M. J. Am. Chem. Soc. 1930, 52,
4006. (b) Teague, P. C. J. Am. Chem. Soc. 1947, 69, 714.
(10) (a) Konishi, T.; Fujitsuka, M.; Ito, O.; Toba, Y.; Usui, Y. J. Phys.
Chem. A 1999, 103, 9938. (b) Zahavy, E.; Seiler, M.; Marx-Tibbon, S.;
Joselevich, E.; Willner, I.; Du¨rr, H.; O’Connor, D.; Harriman, A. Angew.
Chem., Int. Ed. Engl. 1995, 34, 1005. (c) Inada, T. N.; Miyazawa, C. S.;
Kikuchi, K.; Yamauchi, M.; Nagata, T.; Takahashi, Y.; Ikeda, H.; Miyahi,
T. J. Am. Chem. Soc. 1999, 121, 7211. (d) Warren, J. T.; Chen, W.; Johnston,
D. H.; Turro, C. Inorg. Chem. 1999, 38, 6187. (e) Borsarelli, C. D.;
Braslavsky, S. E. J. Phys. Chem. A 1999, 103, 1719.
(11) (a) Leventis, N.; Sotiriou-Leventis, C.; Chen, M.; Jain, A. J.
Electrochem. Soc. 1997, 144, L305. (b) Li, J.; Chen, G.; Dong, S.
Electroanalysis 1997, 9, 834. (c) Tang, X.; Schneider, T. W.; Walker, J.
W.; Buttry, D. A. Langmuir 1996, 12, 5921. (d) Tang, X.; Schneider, T.;
Buttry, D. A. Langmuir 1994, 10, 2235. (e) Katz, E.; Itzhak, N.; Willner,
I. Langmuir 1993, 9, 1392. (f) De Long, H. C.; Buttry, D. A. Langmuir
1992, 8, 2491. (g) Creager, S. E.; Collard, D. M.; Fox, M. A. Langmuir
1990, 6, 1617. (h) Lee, K. A. B. Langmuir 1990, 6, 709. (i) De Long, H.
C.; Buttry, D. A. Langmuir 1990, 6, 1319.
(12) (a) Vo¨gtle, F.; Plevoets, M.; Nieger, M.; Azzellini, G. C.; Credi,
A.; De Cola, L.; De Marchis, V.; Venturi, M.; Balzani, V. J. Am. Chem.
Soc. 1999, 121, 6290. (b) Jockusch, S.; Ramirez, J.; Sanghvi, K.; Nociti,
R.; Turro, N. J.; Tomalia, D. A. Macromolecules 1999, 32, 4419. (c) Pollak,
K. W.; Leon, J. W.; Fre´chet, J. M. J.; Maskus, M.; Abrun˜a, H. D. Chem.
Mater. 1998, 10, 30.
(13) (a) Ruetten, S. A.; Thomas, J. K. Langmuir 2000, 16, 234. (b)
Zhang, G.; Mao, Y.; Thomas, J. K. J. Phys. Chem. B 1997, 101, 7100. (c)
Pfennig B. W.; Chen, P.; Meyer, T. J. Inorg. Chem. 1996, 35, 2898.
(14) (a) Vitale, M.; Castagnola, N. B.; Ortins, N. J.; Brooke, J. A.;
Vaidyalingam, A.; Dutta, P. K. J. Phys. Chem. B 1999, 103, 2408. (b)
Castagnola, N. B.; Dutta, P. K. J. Phys. Chem. B 1998, 102, 1696.
(15) (a) Bavykin, D. V.; Savinov, E. N.; Parmon, V. N. Langmuir 1999,
15, 4722. (b) Logunov, S.; Green, T.; Marguet, S.; El-Sayed, M. A. J. Phys.
Chem. A 1998, 102, 5652. (c) Robins, D. S.; Dutta, P. K. Langmuir 1996,
12, 402.
(34) Mirviss, S. B. J. Org. Chem. 1989, 54, 1948.
(35) (a) Wawzonek, S.; Berkey, R.; Blaha, E. W.; Runner, M. E. J.
Electrochem. Soc. 1956, 103, 456. (b) Given, P. H.; Peover, M. E. J. Chem
Soc. 1960, 385. (c) Umemoto, K. Bull. Chem. Soc. Jpn. 1967, 40, 1058.
(d) Piljac, I.; Murray, R. W. J. Electrochem. Soc. 1971, 118, 1758. (e)
Pekmez, K.; Can, M.; Yildiz, A. Electrochim. Acta 1993, 38, 607. (f)
Revenga, J.; Rodriquez, F.; Tijero, J. J. Electrochem. Soc. 1994, 141, 330.
(36) (a) Paduszek-Kwiatek, B.; Kalinowski, M. K. Electrochim. Acta
1984, 29, 1439. (b) Kwiatek, B.; Kalinowski, M. K. Aust. J. Chem. 1988,
41, 1963.
(37) Bertie, J. E.; Lan, Z. J. Phys. Chem. B 1997, 101, 4111.
(38) The concave-down curvatures in Figure 3 are most probably due
to the formation of HA-aggregates as the concentration of HA increases.
An analysis of mechanisms I and II shows that the proton donor aggregation
number should be also reflected into the slope of the ∆E1/2 vs log[HA]
plots, which therefore should curve downwards with increasing [HA], as
observed.
(39) (a) Bailey, T. D.; McGill, C. K. U.S. Patent 4,158,093, 1979. (b)
Hart, L. S.; Killen, C. R. J.; Saunders: K. D. J. Chem. Soc., Chem. Commun.
1979, 24. (c) Kutney, J. P.; Greenhouse, R. Synth. Commun. 1975, 119.
(40) The reaction of 1 with base is most probably completed in the rotary
evaporator (bath temperature ∼50 °C) during solvent removal. Furthermore,
it may be noted in Table 5 that with H2O and t-BuOH as proton donors, no
8 was formed, whereas in the case of t-BuOH no 1 was recovered either.
These results may seem contradictory because HO- and RO-, which are
necessary for the formation of 9, are byproducts of the formation of 8, and
therefore 8 should have been always present among the electrolysis products.
We have noted, however, that even at slightly elevated temperatures (e.g.,
>30 °C) the reaction of 1 with either CH3O- or t-BuO- is more complicated
than a simple dequaternization, yielding along with 9 intractable products,
which, according to the literature, should be attributed to pyridinium ring
1
opening.41 (In this regard, H NMR spectra in CD3CN show a consistent
(16) Jones, G., II.; Mabla, V. J. Org. Chem. 1985, 50, 5776.
(17) (a) Kosover, E. M.; Poziomek, E. J. J. Am. Chem. Soc. 1964, 86,
5515. (b) Grossi, L.; Minisci, F.; Pedulli, G. F. J. Chem. Soc., Perkin II
1977, 943. (c) Grossi, L.; Minisci, F.; Pedulli, G. F. J. Chem. Soc., Perkin
II 1977, 948.
set of two doublets at 5.95 and 4.72 ppm with a coupling constant of 8.15
Hz, and more complicated patterns in the 2.4-4.6 ppm region.) The same
NMR signals are detectable among the electrolysis products in the presence
of CH3OH and t-BuOH, and it is thus suggested that the yields of 8 and 9
are compromized by competing pyridinium ring opening side reactions.
(18) Neta, P.; Patterson, L. K. J. Phys. Chem. 1974, 78, 2211.
(19) Frangopol, M.; Frangopol, P. T.; Trichilo, C. L.; Geiger, F. E.;
Filipescu, N. J. Org. Chem. 1973, 38, 2355.
(20) Shu, C.-F.; Wrighton, M. S. Inorg. Chem. 1988, 27, 4326.
(21) Yoshiike, N.; Kondo, S.; Fukai, M. J. Electrochem. Soc. 1980, 127,
1496.
(41) (a) Kavalek, J.; Lycka, A.; Machacek, V.; Sterba, V. Collect. Czech.
Chem. Commun. 1975, 40, 1166. (b) Yakovlev, M. Yu.; Kadushkin, A. V.;
Solov’eva, N. P.; Anisimova, O. S.; Granik, V. G. Tetrahedron 1998, 54,
5775.
(42) (a) Byker, H. J. Proc. Electrochem. Soc. 1994, 94, 2. (b) Byker,
H. J. U.S. Patent 5,128,799, 1992. (c) Byker, H. J. U.S. Patent 4,902,108,
1990.
(22) Cupta, N.; Linschitz, H. J. Am. Chem. Soc. 1997, 119, 6384.