Boron-Based Compounds as Pro-Nucleophiles and Co-Catalysts
2-(1,2-Dimethyl-3-buten-1-yl)-naphthalene (6)
Carbonyl Chemistry, Vol. 10 (Ed.: J. Otera), Wiley-VCH, Weinheim,
2000, pp. 299; f) S. R. Chemler, W. R. Roush in Modern Carbonyl
Chemistry, Vol. 11 (Ed.: J. Otera), Wiley-VCH, Weinheim, 2000,
pp. 403.
d) S. H. Kim, C. Shin, A. N. Pae, H. Y. Koh, M. H. Chang, B. Y.
Chung, Y. S. Cho, Synthesis 2004, 1581; e) S. K. De, R. A. Gibbs, Tet-
[8] Double allylation of acetals has also been reported: H. Tanaka, S.
[10] For an example of a stoichiometrically formed boron–ate complex
that reacts with carbenium ion centers, see: R. Hunter, G. D. Tom-
Prepared from ether 1a (0.4 mmol) and a-methylallyl boronate 2c ac-
cording to the general method (eluant for PTLC: hexane). Colorless
liquid; yield: 70%; 1H NMR (600 MHz, [D1]chloroform, 208C, TMS):
d=0.78 and 0.94 (both diastereoisomers; d, 3H, J=6.2 Hz and 6.9 Hz),
1.22 and 1.26 (both diastereoisomers; d, 3H, J=7.6 Hz and 7.6 Hz), 1.42
(s, 1H), 2.32–2.40 (both diastereoisomers; m, 1H), 2.58–2.78 (m, 1H),
4.79–4.98 (both diastereoisomers; m, 2H), 5.58–5.71 (both diastereoiso-
mers; m, 1H), 7.24–7.26 (m, 1H), 7.32–7.37 (m, 2H), 7.49–7.51 (m, 1H),
7.67–7.72 ppm (m, 3H); 13C NMR (150 MHz, [D1]chloroform, 208C,
TMS; both diastereoisomers): d=16.8, 18.1, 19.2, 19.9, 43.8, 44.9, 45.0,
45.6, 113.6, 114.0, 125.1, 125.7, 125.8, 126.0, 126.1, 126.2, 126.8, 127.4,
127.5, 127.5, 127.6, 127.7, 132.1, 132.2, 133.4, 133.5, 142.7, 143.1, 143.2,
143.9 ppm.
2-(1-Methyl-3-butyn-1-yl)-naphthalene (7)
Prepared from ether 1a (0.4 mmol) and allenyl boronate 2e according to
the general method (eluant for PTLC: hexane). Colorless liquid; yield:
65%; 1H NMR (600 MHz, [D1]chloroform, 208C, TMS): d=1.46 (d, 3H,
J=6.9 Hz), 1.51 (s, 1H), 1.97 (t, 1H, J=2.8 Hz), 2.47–2.52 (m, 1H), 2.56–
2.60 (m, 1H), 3.13–3.17 (m, 1H), 7.37–7.46 (m, 3H), 7.66 (s, 1H), 7.78–
7.80 ppm (m, 3H); 13C NMR (150 MHz, [D1]chloroform, 208C, TMS;
both diastereoisomers): d=20.8, 27.5, 39.0, 69.6, 83.0, 125.0, 125.4, 125.5,
125.9, 127.6, 127.7, 128.0, 132.4, 133.5, 143.0 ppm.
3-(2,3,5-Tri-O-benzyl-a-d-ribofuranosyl)-1-propyne (10c)
Prepared from carbohydrate 8b (0.2 mmol) and allenyl boronate 2e ac-
cording to the general method (eluant for PTLC: hexane/ethyl acetate=
85:15, three times). Colorless liquid; yield: 25%; 1H NMR (600 MHz,
[D1]chloroform, 208C, TMS): d=1.99 (s, 1H), 2.61–2.63 (m, 1H), 2.64–
2.71 (m, 1H), 3.49–3.51 (m, 1H), 3.60–3.62 (m, 1H), 4.07–4.09 (m, 1H),
4.12–4.13 (m, 1H), 4.21–4.24 (m, 2H), 4.47 (d, 2H, J=11.0 Hz), 4.58 (t,
2H, J=11.7 Hz), 4.67 (d, 1H, J=11.7 Hz), 4.79 (d, 1H, J=11.0 Hz),
7.26–7.39 ppm (m, 15H); 13C NMR (150 MHz, [D1]chloroform, 208C,
TMS; both diastereoisomers): d=20.0, 69.5, 69.9, 72.5, 73.4, 73.7, 79.0,
79.4, 80.0, 81.4, 127.6, 127.7, 127.7, 127.7, 127.8, 127.9, 128.3, 138.1,
138.2 ppm; IR (neat): n˜ =3030, 2916, 2862, 1453, 1122, 1087, 1048, 1026,
736, 698 cmꢀ1; HRMS (DART): calculated for C29H31O4+ =[M+H]+: m/
z=443.22010, found: m/z=443.22223.
[13] Boranes 4e and 4 f may work as hard Lewis acids for the catalytic
ꢀ
activation of C O bonds.
[14] The Chemistry of C-Glycosides (Eds.: D. E. Levy, C. Tang), Perga-
mon Press, Oxford, UK, 1995.
[16] C. L. B. Macdonald, A. M. Corrente, C. G. Andrews, A. Taylor,
[17] R. Kumar, D. Kumar, A. K. Chakraborti, Synthesis 2007, 299.
[19] W. R. Roush, M. A. Adam, A. E. Walts, D. J. Harrish, J. Am. Chem.
Acknowledgements
This work was partially supported by a Grant-in-Aid for Scientific Re-
search from the Japan Society for the Promotion of Science (JSPS) and
the Global COE Program (Chemistry Innovation through Cooperation
of Science and Engineering), The University of Tokyo, MEXT, Japan.
[20] G. F. Fang, O. A. Wallner, N. Di Blasio, X. Ginesta, J. N. Harvey,
[23] M. Barbero, S. Bazzi, S. Cadamuro, S. Dughera, C. Piccinini, Synthe-
sis 2010, 315.
[25] J. S. Yadav, B. V. S. Reddy, K. Srinivasa Reddy, L. Chandraiah, V.
[27] M. Isobe, W. Phoosaha, R. Saeeng, K. Kira, C. Yenjai, Org. Lett.
[1] Comprehensive Organometallic Chemistry III (Eds.: R. Crabtree, M.
Mingos), Elsevier Ltd., Amsterdam, 2006.
[2] a) W. R. Roush in Comprehensive Organic Synthesis (Ed.: B. M.
Trost), Pergamon Press, Oxford, UK, 1991; b) D. S. Matteson in Ster-
eodirected Synthesis with Organoboranes, Springer, Berlin, 1995;
c) Science of Synthesis: Houben-Weyl Methods of Molecular Trans-
formation, Organometallics, Vol. 6 (Eds.: D. E. Kaufmann, D. S.
Matteson), Thieme, 2005; d) J. W. J. Kennedy, D. G. Hall, in Boronic
Acids, Vol. 11 (Ed.: D. G. Hall), Wiley-VCH, Weinheim, 2005,
Received: January 31, 2011
Published online: July 4, 2011
Chem. Asian J. 2011, 6, 2522 – 2529
ꢀ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2529