resin through a loose cotton plug, methanol was removed under
reduced pressure. The dried residue was extracted with ether
3 × 10 ml to remove methyl benzoate to provide the fully depro-
tected glycocluster 13 as an off-white foam in 95% yield, [α]D 0.0
(c 1.5, H2O); δH (500 MHz; D2O) 7.67 (3 H, s, aromatic), 5.23
(3 H, d, J = 3.8, H-1Ј), 4.79 (6 H, br s, H-1Љ), 4.75 (3 H, d,
J = 7.9, H-1), 4.27 (6 H, m, H-5 and H-5Ј), 4.09 (3 H, m, H-4Ј),
4.04 (3 H, dd, J = 3.3, 10.4, H-3Ј), 3.94 (3 H, dd, J = 3.9, 10.4,
H-2Ј), 3.76–3.89 (21 H, m, H-2, H-3, H-4, H-6 and H-6Ј);
δC (125 MHz; D2O) 134.4 and 122.2 (aromatic), 100.8 (C-1),
94.9 (C-1Ј), 85.2 and 84.6 (acetylenic), 76.9 (C-3), 74.6 (C-2 or
C-4), 72.3 (C-5 or C-5Ј), 70.4 (C-3Ј), 68.9 and 68.7 (C-3Ј, C-4Ј
and C-4 or C-3Ј, C-4Ј and C-2), 67.8 (C-2Ј), 64.4 (C-5 or C-5Ј),
60.5 (C-6 and C-6Ј), 56.7 (C-1Љ); m/z (ESI-MS) 1230.0 (Found:
[M ϩ NH4ϩ]. C51H76NO33 requires [M ϩ NH4ϩ] 1230.4).
ml of methanol to which a catalytic amount of sodium methox-
ide was added. The mixture was stirred at room temperature for
24 h. Sodium methoxide was neutralized with AMBERLITE
IR-120 (Hϩ). After careful filtration of the resin through a
loose cotton plug, methanol was removed under reduced pres-
sure, the dried residue was extracted with ether 3 × 10 ml to
remove methyl benzoate to afford the deprotected glycocluster
18 as an off-white foam in 95% yield, [α]D 0.0 (c 1.8, H2O);
δH (500 MHz; D2O) 7.30 (8 H, br s, aryl), 6.98 (8 H, br s, aryl),
5.21 (4 H, br s, H-1Ј), 4.82 (8 H, s, PhCH2 or H-1Љ), 4.63 (8 H, s,
PhCH2 or H-1Љ), 4.60 (4 H, br s, H-1), 4.23 (8 H, br s, H-5
and H-5Ј), 4.06 (4 H, br s, H-4Ј), 4.01 (4 H, br d, J = 10.8,
H-3Ј), 3.93 (4 H, dd, J = 2.9, 10.1, H-2Ј), 3.77–3.83 (28 H, m,
H-2, H-3, H-4, H-6 and H-6Ј), 3.42 (8 H, s, C(CH2OR)4);
δC (125 MHz; D2O) 138.5, 131.3, 126.8 and 120.6 (aromatic),
101.1 (C-1), 95.0 (C-1Ј), 85.2 and 84.5 (acetylenic), 77.2,
70.3, 68.9, 68.7, 67.8, 64.2, 60.5, 60.2, 56.6 (C-4, C-5, C-6, C-2Ј,
C-3Ј, C-4Ј, C-5Ј, C-6Ј, PhCH2, C-1Љ); m/z (ESI-MS) 1022.2
(Found: [M ϩ 2NH4ϩ]. C93H132N2O48 requires [M ϩ 2NH4ϩ],
1022.4).
Pentaerythritol tetrakis(p-iodobenzyl) ether 16
Pentaerythritol (14) (27.2 mg, 0.2 mmol) was dissolved into 10
ml of dry DMF, then a catalytic amount of tetrabutylam-
monium iodide and 46 mg of NaH (0.96 mmol, 1.2 eq./OH)
were added to the solution. After one hour, p-iodobenzyl brom-
ide (15) (286 mg, 0.96 mmol) was added. The mixture was
stirred at room temperature for 5 h. Excess NaH was slowly
quenched with cold water. The solution was washed with 3 × 20
ml of ether and the organic phases were combined together and
washed with 3 × 20 ml of water. After drying over anhydrous
sodium sulfate the solvent was evaporated and the residue was
carefully separated by silica gel column chromatography using
hexane–ether (7 : 1) to give 16 as a white solid in 47% yield,
mp 136–138 ЊC; δH (500 MHz; CDCl3) 7.58 (8 H, d, J = 8.1,
aromatic), 6.95 (8 H, d, J = 8.1, aromatic), 4.36 (8 H, s, PhCH2),
3.45 (8 H, s, C(CH2-)4); δC (125 MHz; CDCl3) 138.2, 137.3,
129.2 and 92.8 (aromatic), 72.5 (PhCH2), 69.1 (C(CH2-)4), 45.5
(C(CH2-)4); m/z (FAB-MS) 1001.2 (Found: [M ϩ Hϩ]. C33H33O4
requires [M ϩ Hϩ] 1001.0) (Anal. Calcd for C33H32O4I4: C,
39.63; H, 3.22. Found: C, 39.83; H, 3.19%).
Acknowledgements
Dedicated to the late Professor Göran Magnusson who was an
inspiration throughout my career in carbohydrate chemistry.
We thank the National Science and Engineering Research
Council of Canada (NSERC) for financial support.
References
1 (a) U. Galili, Immunol. Today, 1993, 14, 480; (b) D. K. C. Cooper
and R. Oriol, in Glyco-sciences. Status and Perspectives, Eds. H.-J.
Gabius and S. Gabius, Chapman & Hall, Weinheim, Germany,
p. 531, 1997.
2 (a) K. J. Lafferty, Transplant. Proc., 1999, 31, S-1; (b) U. Martin,
G. Steinhoff, V. Kiessig, M. Chikobava, M. Anssar, T.
Morschheusser, B. Lapin and A. Haverich, Transplant. Proc., 1999,
31, 913.
ꢀ-Gal tetramer 17
3 U. Galili, Immunol. Ser., 1991, 55, 355.
4 (a) P. Simon, F. A. Neethling, S. Taniguchi, P. L. Good, D, Zopf,
W. W. Hancock and D. K. C. Cooper, Transplantation, 1998, 65,
346; (b) E. Klein, M. Euler and J. Vercellotti, Biotechnol. Appl.
Biochem., 1998, 28, 189; (c) Y. Ye, F. A. Neethling, M. Niekrasz,
S. V. Richards, E. Koren, H. Merhav, S. Kosanke, R. Oriol and
D. K. C. Cooper, Transplantation, 1994, 58, 330; (d) Y. Xu, T.
Lorf, T. Sablinski, P. Gianello, M. Bailin, R. Monroy, T. Kozlowski,
D. K. C. Cooper and D. H. Sachs, Transplantation, 1998, 65, 172;
(e) S. Tanigichi, F. A. Neethling, E. Y. Korchagina, N. Bovine, Y. Ye,
T. Kobayashi, M. Miekrasz, S. Li, E. Koren, R. Oriol and D. K. C.
Cooper, Transplantation, 1998, 62, 1379; ( f ) T. Kozlowski, F. L.
Ierino, D. Lambrights, A. Foley, D. Andrews, M. Awward, R.
Monroy, A. B. Cosimi, D. K. C. Cooper and D. H. Sachs,
Xenotransplantation, 1996, 5, 122.
To a solution of compound 8 (150 mg, 0.188 mmol) in 10 ml of
DMF–TEA (1 : 1) were added Pd(PPh3)2Cl2 (6.7 mg, 0.009
mmol (5 mol%)) and 16 (39.1 mg, 0.039 mmol). The solution
was stirred under nitrogen at 60 ЊC for 5 h. The solvent and
TEA were evaporated under reduced pressure. The resulting
mixture was purified by silica gel column chromatography using
ethyl acetate–hexane (2 : 1) to provide compound 17 as a white
foam in 81% yield, [α]D ϩ97.5 (c 1, CHCl3); δH (500 MHz;
CDCl3) 7.98–8.02 (16 H, m, aromatic), 7.40–7.55 (16 H, m,
aromatic), 7.14–7.29 (20 H, m, aromatic), 5.54 (4 H, dd, J = 8.0,
10.1, H-2), 5.51 (4 H, d, J = 2.8, H-4), 5.20 (4 H, d, J < 1, H-1Ј),
5.18 (4 H, dd, J = 3.5, 10.4, H-2Ј), 5.03 (4 H, dd, J = 3.3, 10.4,
H-3Ј), 4.90 (4 H, d, J = 8.0, H-1), 4.88 (4 H, m, H-4Ј), 4.58 (8 H,
s, H-1Љ), 4.55 (4 H, dd, J = 6.4, 11.3, H-6a), 4.45 (8 H, s,
PhCH2), 4.32 (4 H, dd, J = 6.6, 11.3, H-6b), 4.10 (4 H, dd,
J = 3.1, 10.1, H-3), 4.04 (4 H, t, J = 6.7, H-5), 3.96 (4 H, t,
J = 6.5, H-5Ј), 3.73 (4 H, dd, J = 6.6, 11.2, H-6aЈ), 3.66 (4 H, dd,
J = 6.6, 11.2, H-6bЈ), 3.56 (8 H, s, C(CH2OR)4), 2.20, 2.03, 1.99,
1.86 and 1.72 (each 12 H, 5s, 20 CH3CO2); δC (125 MHz;
CDCl3) 170.2, 169.9, 169.8, 169.7 and 169.3 (CH3CO2), 166.0,
165.0 (PhCO2), 139.5, 133.4, 133.3, 132.1, 132.0, 131.7, 129.7,
129.4, 129.3, 128.5, 128.4, 127.1, 127.0 and 121.1 (aromatic),
98.9 (C-1), 93.7 (C-1Ј), 86.7 and 83.5 (acetylenic), 73.7 (C-3),
72.8 (PhCH2), 71.0 (C-5), 70.0 (C-2), 69.5 (C(CH2OR)4), 67.6
(C-4Ј), 66.9 (C-3Ј), 66.5 (C-2Ј), 66.4 (C-5Ј), 65.1 (C-4), 61.7
(C-6), 61.2 (C-6Ј), 56.8 (C-1Љ), 45.7 (C(CH2OR)4), 20.7, 20.4
and 20.3 (CH3CO2); m/z (MALDI-TOF MS) 3706.55 (Found:
[M ϩ Naϩ]. C189H196O78 requires [M ϩ Naϩ] 3706.68).
5 H. Sashiwa, J. M. Thompson, S. K. Das, Y. Shigemasa, S. Tripathy
and R. Roy, Biomacromolecules, 2000, 1, 303.
6 (a) X. Chen, P. R. Andreana and P. G. Wang, Curr. Opin. Chem.
Biol., 1999, 3, 650; (b) W. Zhang, W. Xie, J. Wang, X. Chen, J. Fang,
Y. Chen, J. Li, L. Yu, D. Chen and P. G. Wang, Curr. Org. Chem.,
1999, 3, 241; (c) J. Q. Wang, X. Chen, W. Zhang, S. Zakarek,
Y. S. Chen and P. G. Wang, J. Am. Chem. Soc., 1999, 121, 6174.
7 R. Roy, Curr. Opin. Struct. Biol., 1996, 6, 692.
8 (a) L. L. Kiessling and N. L. Pohl, Chem. Biol., 1996, 3, 71; (b) M.
Mammen, S. K. Choi and G. M. Whitesides, Angew. Chem., Int. Ed.,
1998, 37, 2754.
9 H. C. Hansen, S. Haataja, J. Finne and G. Magnusson, J. Am. Chem.
Soc., 1997, 119, 6974.
10 R. Roy, S. K. Das, F. Santoyo-González, F. Hernández-Mateo,
T. K. Dam and C. F. Brewer, Chem. Eur. J., 2000, 6, 1757.
11 T. K. Dam, R. Roy, S. K. Das, S. Oscarson and C. F. Brewer, J. Biol.
Chem., 2000, 275, 14223.
12 S. Koto, S. Inada, T. Yoshida, M. Toyama and S. Zen, Can. J. Chem.,
1981, 59, 255.
13 P. J. Garegg, H. Hultberg and C. Lindberg, Carbohydr. Res., 1980,
83, 157.
14 (a) J. Bogusiak and W. Szeja, Pol. J. Chem., 1981, 55, 1503;
(b) S. Cao, Ph.D. Dissertation, University of Ottawa, 1996, p. 51;
Fully deprotected ꢀ-Gal tetramer 18
α-Gal tetramer 17 (95 mg, 0.026 mmol) was dissolved into 40
778
J. Chem. Soc., Perkin Trans. 1, 2001, 773–779