4094
J . Org. Chem. 2001, 66, 4094-4096
capped cases where they displayed activity beyond that
F r om Ca r boh yd r a tes to P olyoxygen a ted
Cycloocten es via Rin g-Closin g Meta th esis
of the parent complex 1.7
Franc¸ois-Didier Boyer,† Issam Hanna,*,‡ and
Steven P. Nolan§
Unite´ de Phytopharmacie et Me´diateurs Chimiques,
I.N.R.A., Route de Saint-Cyr, F-78026 Versailles, France,
Laboratoire de Synthe`se Organique associe´ au CNRS, Ecole
Polytechnique, F-91128 Palaiseau, France, and Department
of Chemistry, University of New Orleans, Louisiana 70148
Carbohydrate to carbocycle transformations offer an
attractive route for the synthesis of optically active
natural products.8 Although a wide range of methods for
producing functionalized five-, six-, and seven-membered
rings from sugars are available,9,10 only two reports have
been published on the preparation of cyclooctenes using
Claisen rearrangement of 2-methylene-C-vinyl glyco-
sides.11 In an extension of our previous work on the
synthesis of medium-sized rings from carbohydrates,12
we report here studies dealing with substitution pattern
effects on the construction of polyoxygenated cyclooctenes
by RCM reaction and a comparative investigation of the
reactivity of catalysts 1 and 2.
The RCM precursors were prepared from methyl
6-deoxy-6-iodoglycosides 8a -c13 as illustrated in Scheme
1. Reductive ring-opening with zinc dust under sonication
converted 8 to aldehyde 9 in nearly quantitative yield.
Treatment of 9 with butenylmagnesium bromide at -60
°C in THF and subsequent protection of the resulting
alcohol 10 afforded acetate 11 in 63-77% overall yield
from 8. While addition of the Grignard reagent to 9b (R
) TBDMS) in ether gave a single alcohol, this reaction
has been found less stereoselective in THF and led, after
protection, to 11b as a mixture of diastereomers in 1.3:1
ratio. In the same manner 11a (R ) Bn) and 11c [R )
triethylsilyl (TES)] were obtained as a mixture of dia-
hanna@poly.polytechnique.fr
Received February 15, 2001
The construction of eight-membered rings, present in
many biologically active natural products, remains a
prominent synthetic challenge owing to the difficulties
associated with cyclooctane chemistry.1 Of all ring sizes,
the formation of these compounds by intramolecular ring
closure reactions is the most difficult. Despite the un-
favorable thermodynamic factors that impede the prepa-
ration of eight-membered rings, the olefin ring-closing
metathesis reaction (RCM)2 has been successfully applied
to the synthesis of carbocyclic rings of this size.3 The
presence in the substrates of conformational constraints,
such as preexisting rings, greatly facilitated the assembly
of cyclooctyl derivatives. In some cases the commercially
available Grubbs ruthenium catalyst 1 has been shown
to be of great efficiency.4 In contrast, previous attempts
to cyclize conformationaly flexible acyclic dienes to eight-
membered carbocycles using 1 have proven unsuccessful.
It has been shown that the replacement of one of the
phosphine ligands in 1 with a sterically demanding
nucleophilic carbene (e.g., N,N′-bis(mesityl)imidazol-2-
ylidene, IMes) to yield 25 leads to increased ring-closing
activity. This catalyst and its saturated imidazol-2-
ylidene analogue 36 have been applied to several handi-
(7) For recent examples on the use of catalysts 2 and 3, see: (a)
Efremov, I.; Paquette, L. A. J . Am. Chem. Soc. 2000, 122, 9324-9325.
(b) Lee, C. W.; Grubbs, R. H. Org. Lett. 2000, 2, 2145-2147 and
references therein. (c) Bourgeois, D.; Mahuteau, J .; Pancrazi, A.; Nolan,
S. P.; P.; Prunet, J . Synthesis 2000, 869-882. (d) Fu¨rstner, A.; Thiel,
O.; R.; Ackermann, L.; Schanz, H.-J .; Nolan, S. P. J . Org. Chem. 2000,
651, 2204-2207. (e) Briot, A.; Bujard, M.; Gouverneur, V.; Nolan, S.
P.; Mioskowski, C. Org. Lett. 2000, 2, 1517-1519.
† Unite´ de Phytopharmacie et Me´diateurs Chimiques, I.N.R.A.
‡ Ecole Polytechnique.
§ University of New Orleans.
(1) For reviews, see: (a) Petasis, N. A.; Patane, M. A. Tetrahedron
1992, 48, 5757-5821. (b) Mehta, G.; Singh, V. Chem. Rev. 1999, 99,
881-930.
(2) For recent reviews concernig ring-closure metathesis reactions,
see (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29.
(b) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012-3043. (c)
Armstrong, S. K. J . Chem. Soc., Perkin Trans. 1 1998, 371-388. (d)
Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413-4450.
(3) For a recent review see: Maeir, M. E. Angew. Chem., Int. Ed.
2000, 39, 2073-3077.
(4) For earlier examples of cyclooctene syntheses by RCM, see: ref
1. For more recent applications, see: (a) Paquette, L. A.; Schloss, J .
D.; Efremov, I.; Fabris, F.; Gallou, F.; Me´ndez-Andino, J .; Yang, J . Org.
Lett. 2000, 2, 1259-1261. (b) Paquette, L. A.; Tae, J . Arrington, M.
P.; Sadoun, A. H. J . Am. Chem. Soc. 2000, 122, 2742-2748 and
references therein. (c) Bourgeois, D.; Pancrazi, A.; Ricard, L.; P.;
Prunet, J . Angew. Chem., Int. Ed. 2000, 39, 725-728. For recent
reports on the synthesis of cyclic ethers of eight-membered ring, see:
Clark, J . S.; Hamelin, O. Angew. Chem., Int. Ed. 2000, 39, 372-374.
Crimmins, M. T.; Choy, A. L. J . Am. Chem. Soc. 1999, 121, 5653-
5660.
(8) For reviews, see: (a) Dalko, D. I.; Sinay¨, P. Angew. Chem., Int.
Ed. 1999, 38, 773-777. (b) Ferrier, R. J .; Middleton, S. Chem. Rev.
1993, 93, 2779-2831.
(9) For recent examples, see: (a) Ackermann, L.; El Tom, D.;
Fu¨rstner, A. Tetrahedron 2000, 56, 2195-2202. (b) Sollogoub, M.;
Mallet, J .-M.; Sinay¨, P. Angew. Chem., Int. Ed. 2000, 39, 362-364. (c)
Kan, T.; Nara, S.; Ozawa, T.; Shirahama, H.; Matsuda, F. Angew.
Chem., Int. Ed. 2000, 39, 355-357. (d) Collam, C. S.; Lowry, T. L. Org.
Lett. 2000, 2, 167-169. (e) Hyldtof, L.; Poulsen, C. S.; Madsen, R.
Chem. Commun. 1999, 122, 2101-2102. (f) Kornienko, A.; d’Alarcao,
M. Tetrahedron: Asymmetry 1999, 10, 827-829. (g) Ovaa, H.; Code´e,
J . D. C.; Lastrager, B.; Overkleeft, H. S.; van der Marel, G.; van Boom,
J . Tetrahedron Lett. 1999, 40, 5063-5066.
(10) For the synthesis of cycloheptane derivatives from carbohy-
drates, see: (a) Marco-contelles, J .; de Opazo, E. Tetrahedron Lett. 1999,
40, 4445-4448. (b) Marco-contelles, J .; de Opazo, E. J . Org. Chem.
2000, 65, 5416-5419. (c) Boyer, F.-D.; Lallemand, J .-Y. Tetrahedron
1994, 50, 10443 and Boyer, F.-D.; Lallemand, J .-Y. Synlett 1992, 969-
971. (d) Duclos, O.; Dure´ault, A.; Depezay, J . C. Tetrahedron Lett. 1992,
33, 1059-1062.
(5) This catalyst was originally and almost simultaneously described
by the groups of Nolan and Grubbs: Huang, J .; Stevens, E. D.; Nolan,
S. P.; Peterson, J . L.. J . Am. Chem. Soc. 1999, 121, 2674-2678. Scholl,
M.; Trnka, T. M.; Morgan, J . P.; Grubbs, R. H. Tetrahedron Lett. 1999,
40, 2247-2250.
(6) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999,
1, 953-956.
(11) For the synthesis of cyclooctane derivatives from sugars, see:
(a) Wang, W.; Zhang, Y.; Sollogoub, M.; Sinay¨, P. Angew. Chem., Int.
Ed. 2000, 39, 2466-2467. (b) Werschkum, B.; Thiem, J . Angew. Chem.,
Int. Ed. 1997, 36, 2793-2794.
(12) Hanna, I.; Ricard, L. Org. Lett. 2000, 2, 2651-2654.
10.1021/jo0155761 CCC: $20.00 © 2001 American Chemical Society
Published on Web 04/25/2001