4
1
2
Top. Curr. Chem. 2007, 274, 35. d) Sulfur-Mediated
Rearrangements I (Ed.: E. Schaumann), Springer, 2007. e) L. H.
S. Smith, S. C. Coote, H. F. Sneddon, D. J. Procter, Angew. Chem.,
Int. Ed. 2010, 49, 5832. f) H. Yorimitsu, J. Synth. Org. Chem. Jpn.
2013, 71, 341. g) D. Gamba-Sánchez, F. Garzón-Posse, in
Molecular Rearrangements in Organic Synthesis (Ed.: C. M.
Rojas), John-Wiley Sons, Hoboken, 2015, Chapter 20. h) A. P.
Pulis, D. J. Procter, Angew. Chem. Int. Ed. 2016, 55, 9842. i) A.
Shafir, Tetrahedron Lett. 2016, 57, 2673. j) H. Yorimitsu, Chem.
Rec. 2017, 17, 1156. k) T. Yanagi, K. Nogi, H. Yorimitsu,
Tetrahedron Lett. 2018, 59, 2951.
Selected reports from our group: a) S. Yoshida, H. Yorimitsu, K.
Oshima, Org. Lett. 2009, 11, 2185. b) T. Kobatake, S. Yoshida, H.
Yorimitsu, K. Oshima, Angew. Chem. Int. Ed. 2010, 49, 2340. c)
T. Kobatake, D. Fujino, S. Yoshida, H. Yorimitsu, K. Oshima, J.
Am. Chem. Soc. 2010, 132, 11838. d) K. Murakami, H. Yorimitsu,
A. Osuka, Angew. Chem. Int. Ed. 2014, 53, 7510. e) K. Murakami,
H. Yorimitsu, A. Osuka, Bull. Chem. Soc. Jpn. 2014, 87, 1349. f)
T. Yanagi, S. Otsuka, Y. Kasuga, K. Fujimoto, K. Murakami, K.
Nogi, H. Yorimitsu, A. Osuka, J. Am. Chem. Soc. 2016, 138,
14582. g) H. Kawashima, T. Yanagi, C.-C. Wu, K. Nogi, H.
Yorimitsu, Org. Lett. 2017, 19, 4552. h) K. Okamoto, M. Hori, T.
Yanagi, K. Murakami, K. Nogi, H. Yorimitsu, Angew. Chem. Int.
Ed. 2018, 57, 14230. i) M. Hori, T. Yanagi, K. Murakami, K. Nogi,
H. Yorimitsu, Bull. Chem. Soc. Jpn. 2018, 92, 302. j) T. Yanagi,
K. Nogi, H. Yorimitsu, Synlett 2019, in press (DOI: 10.1055/s-
0037-1611767). k) M. Hori, K. Nogi, A. Nagaki, H. Yorimitsu,
Asian J. Org. Chem. 2019, 8, 1084. l) T. Yanagi, K. Nogi, H.
Yorimitsu, Chem. Eur. J. 2019, in press (DOI:
10.1002/chem.201903570).
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
2012, 14, 38. i) A. Kirschning, L. Kupracz, J. Hartwig, Chem. Lett.
2012, 41, 562. j) K. S. Elvira, X. C. Solvas, R. C. R. Wootton, A.
J. deMello, Nat. Chem. 2013, 5, 905. k) J. C. Pastor, D. L. Browne,
S. V. Ley, Chem. Soc. Rev. 2013, 42, 8849. l) I. R. Baxendale, J.
Chem. Technol. Biotechnol. 2013, 88, 519. m) T. Fukuyama, T.
Totoki, I. Ryu, Green Chem. 2014, 16, 2042. n) C. J. Mallia, I. R.
Baxendale, Org. Process Res. Dev. 2016, 20, 327. o) D. Cambié,
C. Bottecchia, N. J. W. Straathof, V. Hessel, T. Noel, Chem. Rev.
2016, 116, 10276. p) S. Kobayashi, Chem. Asian J. 2016, 11, 425.
q) M. B. Plutschack, B. Pieber, K. Gilmore, P. H. Seeberger, Chem.
Rev. 2017, 117, 11796. r) B. Gutmann, C. O. Kappe, J. Flow.
Chem. 2017, 7, 65.
a) J. Yoshida, Chem. Commun. 2005, 4509. b) J. Yoshida, A.
Nagaki, T. Yamada, Chem. Eur. J. 2008, 14, 7450. c) J. Yoshida,
Chem. Rec. 2010, 10, 332. d) J. Yoshida, Y. Takahashi, A. Nagaki,
Chem. Commun. 2013, 49, 9896. e) J. Yoshida, H. Kim, A. Nagaki,
J. Flow Chem. 2017, 7, 60.
Swern oxidation in flow microreactors at room temperature was
reported: a) T. Kawaguchi, H. Miyata, K. Ataka, K. Mae, J.-I.
Yoshida, Angew. Chem. Int. Ed. 2005, 44, 2413. b) J. J. M. van
der Linden, P. W. Hilberink, C. M. P. Kronenburg, G. J.
Kemperman, Org. Process Res. Dev. 2008, 12, 911.
The Gassman indole synthesis is well known as the controlled
reaction of sulfoniums with anilines while the applicable
substrates are limited to β-carbonyl sulfides. a) P. G. Gassman, T.
J. Van Bergen, G. Grutzmacher, J. Am. Chem. Soc. 1973, 95, 6508.
b) P. G. Gassman, T. J. Van Bergen, D. P. Gilbert, B. W. Cue, Jr.,
J. Am. Chem. Soc. 1974, 96, 5495. c) P. G. Gassman, T. J. Van
Bergen, J. Am. Chem. Soc. 1974, 96, 5508.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
5
8
9
93 10
94
95
96
97
98
99
100 11 Although Pummerer reactions with nitrogen nucleophiles have
6
From other groups: a) S. Akai, N. Morita, K. Iio, Y. Nakamura, Y. 101
Kita, Org. Lett. 2000, 2, 2279. b) J. B. Hendrickson, M. A. Walker, 102
Org. Lett. 2000, 2, 2729. c) S. Akai, N. Kawashita, N. Morita, Y. 103
Nakamura, K. Iio, Y. Kita, Heterocycles 2002, 58, 75. d) S. Akai, 104
N. Kawashita, H. Satoh, Y. Wada, K. Kakiguchi, I. Kuriwaki, Y. 105
Kita, Org. Lett. 2004, 6, 3793. e) S. Akai, N. Kawashita, Y. Wada, 106
H. Satoh, A. H. Alinejad, K. Kakiguchi, I. Kuriwaki, Y. Kita, 107
Tetrahedron Lett. 2006, 47, 1881. f) X. Hung, N. Maulide, J. Am. 108
Chem. Soc. 2011, 133, 8510. g) A. J. Eberhart, J. E. Imbriglio, D. 109
J. Procter, Org. Lett. 2011, 13, 5882. h) X. Hung, M. Patil, C. Farès, 110
W. Thiel, N. Maulide, J. Am. Chem. Soc. 2013, 135, 7312. i) A. J. 111
Eberhart, C. Cicoira, D. J. Procter, Org. Lett. 2013, 15, 3994. j) A. 112
J. Eberhart, D. J. Procter, Angew. Chem. Int. Ed. 2013, 52, 4008. 113
k) A. J. Eberhart, H. J. Shrives, E. Álvarez, A. Carrër, Y. Zhang, 114
D. J. Procter, Chem. Eur. J. 2015, 21, 7428. l) A. J. Eberhart, H. 115
Shrives, Y. Zhang, A. Carrër, A. V. S. Parry, D. J. Tate, M. L. 116
Turner, D. J. Procter, Chem. Sci. 2016, 7, 1281. m) H. J. Shrives, 117
J. A. Fernández-Salas, C. Hedtke, A. P. Pulis, D. J. Procter, Nat. 118
Commun. 2017, 8, 14801. n) L. Shang, Y. Chang, F. Luo, J.-N. He, 119
X. Huang, L. Zhang, L. Kong, K. Li, B. Peng, J. Am. Chem. Soc. 120
2017, 139, 4211. o) Z. He, H. J. Shrives, J. A. Fernández-Salas, A. 121
Abengózar, J. Neufeld, K. Yang, A. P. Pulis, D. J. Procter, Angew. 122
Chem. Int. Ed. 2018, 57, 5759. p) F. Luo, Y. Lu, M. Hu, J. Tian, 123
L. Zang, W. Bao, C. Yan, X. Huang, Z.-X. Wang, B. Peng, Org. 124
Chem. Front. 2018, 5, 1756. q) K. Yang, A. P. Pulis, G. J. P. Perry, 125 12
D. J. Procter, Org. Lett. 2018, 20, 7498. r) M. Šiaučiulis, N. 126
Ahlsten, A. P. Pulis, D. J. Procter, Angew. Chem. Int. Ed. 2019, 127 13
58, 8779. s) L. Zhang, J.-N. He, Y. Liang, M. Hu, L. Shang, X. 128
Huang, L. Kong, Z.-X. Wang, B. Peng, Angew. Chem. Int. Ed. 129
2019, 58, 5316. t) X. Meng, D. Chen, X. Cao, J. Luo, F. Wang, S. 130
been reported, the applicable nucleophiles are limited to less
reactive amides, except for Ref 5l. a) S. Wolfe, P. M. Kazmaier,
H. Auksi, Can. J. Chem. 1979, 57, 2412. b) T. Kaneko, J. Am.
Chem. Soc. 1985, 107, 5490. c) Y. Kita, O. Tamura, T. Miki, Y.
Tamura, Tetrahedron Lett. 1987, 28, 6479. d) K. S. Feldman, A.
P. Skoumbourdis, Org. Lett. 2005, 7, 929. e) K. S. Feldman, A. P.
Skoumbourdis, M. D. Fodor, J. Org. Chem. 2007, 72, 8076. f) K.
S. Feldman, M. D. Fodor, J. Am. Chem. Soc. 2008, 130, 14964. g)
K. S. Feldman, A. Y. Nuriye, Tetrahedron Lett. 2009, 50, 1914. h)
K. S. Feldman, M. D. Fodor, J. Org. Chem. 2009, 74, 3449. i) K.
S. Feldman, M. D. Fodor, A. P. Skoumbourdis, Synthesis, 2009,
3162.
Thio- and selenoglycosylation of nucleobases. j) I.
A. O’Neil, K. M. Hamilton, Synlett 1992, 791. k) Y. Yoshimura,
K. Kitano, H. Satoh, M. Watanabe, S. Miura, S. Sakata, T. Sasaki,
A. Matsuda, J. Org. Chem. 1996, 61, 822. l) L. A. Paquette, S.
Dong, J. Org. Chem. 2005, 70, 5655. m) P.Dande, T. P. Prakash,
N. Sioufi, H. Gaus, R. Jarres, A. Berdeja, E. E. Swayze, R. H.
Griffey, B. Bhat, J. Med. Chem. 2006, 49, 1624. n) H. Choo, X.
Chen, V. Yadav, J. Wang, R. F. Schinazi, C. K. Chu, J. Med. Chem.
2006, 49, 1635. o) Y. Yoshimura, Y. Yamazaki, M. Kawahata, K.
Yamaguchi, H. Takahata, Tetrahedron Lett. 2007, 48, 4519. p) K.
Jayakanthan, B. D. Johnston, B. M. Pinto, Carbohydr. Res. 2008,
343, 1790. q) Y. Yoshimura, Y. Yamazaki, Y. Saito, H. Takahata,
Tetrahedron 2009, 65, 9091.
Thioimidates 3 undergo fast E/Z isomerization even at room
temperature.
2-Sulfinyl indoles undergo trifluoroacetoxylation at the C3
position in the presence of trifluoroacetic anhydride and iPr2EtN.
a) K. S. Feldman, D. B. Vidulova, Org. Lett. 2004, 6, 1869. b) K.
S. Feldman, D. B. Vidulova, A. G. Karatjas, J. Org. Chem. 2005,
70, 6429. c) S. R. Hare, A. Li, D. J. Tantillo, Chem. Sci. 2018, 9,
8937.
As far as we investigated, the formation of iPr2EtN•HOTf in M2
did not cause clogging. This indicates the solubility of the
ammonium salt in dichloromethane is reasonably high. In case of
clogging, washing with acetone should be suitable.
Huang, Chem. Commun. 2019, 55, 12495
131
7
Reviews on flow microreactor synthesis: a) B. P. Mason, K. E. 132
Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. 133 14
Rev. 2007, 107, 2300. b) B. Ahmed-Omer, J. C. Brandt, T. Wirth, 134
Org. Biomol. Chem. 2007, 5, 733. c) P. Watts, C. Wiles, Chem. 135
Commun. 2007, 443. d) T. Fukuyama, M. T. Rahman, M. Sato, I. 136
Ryu, Synlett 2008, 151. e) R. L. Hartman, K. F. Jensen, Lab Chip 137 15
2009, 9, 2495. f) J. P. McMullen, K. F. Jensen, Annu. Rev. Anal. 138
Chem. 2010, 3, 19. g) J. Yoshida, H. Kim, A. Nagaki,
T. Matsumura, T. Niwa, M. Nakada, Tetrahedron Lett. 2012, 53,
4313.
ChemSusChem 2011, 4, 331. h) C. Wiles, P. Watts, Green Chem.