A. K. Ghosh, J.-H. Kim / Tetrahedron Letters 43 (2002) 5621–5624
Table 2. Aldol reaction of various esters with representative aldehydes
5623
Entry
Ester
Aldehyde
Base (equiv.)
Yield (%)a
syn:anti (9/10)b
1
2
3
4
5
6
7
8
9
R1=tBu, R2=Me
R1=iBu, R2=Me
R1=Bn, R2=Me
R1=iBu, R2=Me
R1=iBu, R2=Me
R1=iBu, R2=Me
R1=iBu, R2=Me
R1=iBu, R2=Me
R1=iPr, R2=iBu
Me2CHCHO
Me2CHCHO
Me2CHCHO
Me2CHCHO
Me2CHCHO
PhCHO
Ph-CꢁC-CHO
BnOCH2CHO
Me2(CH2)2CHO
DIPEA (3)
DIPEA (2.5)
DIPEA (2.5)
(−)-Spartein (2.2)
Et3N (2.5)
Et3N (2.5)
Et3N (2.5)
DIPEA (3)
DIPEA (3)
35
73
86
63
83
77
83
80
97
90:10
85:15
86:14
88:12
88:12
85:15
14:86
99:1
87:13
a Isolated yield after chromatography.
b Ratios determined by 1H NMR before and after chromatography.
tosyl-(S)-leucinol-derived esters and a number of alde-
hydes. The results of these various aldol reactions are
illustrated in Table 2. As can be seen, the sterically
demanding tert-leucinol-derived chiral auxiliary exhib-
ited lower yield over leucinol-derived auxiliary; how-
ever, stereoselectivities were comparable (entries 1 and
2). The phenylalaninol-derived chiral auxiliary has also
shown comparable syn-diastereoselectivity under the
reaction conditions described above (entry 3). Interest-
ingly however, the same aldol reaction with fewer
equivalents of TiCl4 precomplexed to isovaleraldehyde
displayed anti-diastereoselectivity.10 Such reversal in
diastereoselectivity is not totally unexpected as the
Lewis acid to aldehyde ratio is known to effect aldol
stereoselectivity.11 The choice of base is quite important
for reaction yield but does not seem to effect observed
stereoselectivity (entries 3–5). The chirality on the base
has little influence on diastereoselectivities. Bidentate
oxyaldehydes are in general very good substrates for
ester enolate aldol reactions, providing syn-aldolates in
excellent yields and diastereoselectivities (entry 8). The
valinol-derived chiral auxiliary has also shown very
good syn-diastereoselectivity and reaction yield with
isocaproate ester (entry 9).
Wu, B. Org. Lett. 2000, 2, 1439; (c) Roush, W. R.;
Pfeifer, L. A. Org. Lett. 2000, 2, 859; (d) Evans, D. A.;
Trotter, B. W.; Coleman, P. J.; Coˆte´, B.; Dias, L. C.;
Rajapakse, H. A.; Tyler, A. N. Tetrahedron 1999, 55,
8671; (e) Ghosh, A. K.; Fidanze, S. Org. Lett. 2000, 2,
2405; (f) Ghosh, A. K.; Bischoff, A. Org. Lett. 2000, 2,
1537; (g) Kobayashi, S.; Hamada, T.; Nagayama, S.;
Manabe, K. Org. Lett. 2001, 3, 165; (h) Andrus, M. B.;
Meredith, E. L.; Soma Sekhar, B. B. V. Org. Lett. 2001,
3, 259.
2. For syn-aldol reactions, see: (a) Masamune, S.; Bates, G.
S.; Corcoran, J. W. Angew. Chem., Int. Ed. Engl. 1977,
16, 585; (b) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am.
Chem. Soc. 1981, 103, 2127; (c) Roder, H.; Helmchen, G.;
Peters, E.-M.; von Schmering, H.-G. Angew. Chem., Int.
Ed. Engl. 1984, 23, 898; (d) Masamune, S.; Choy, W.;
Peterson, J. S.; Sita, L. R. Angew. Chem., Int. Ed. Engl.
1985, 24, 1; (e) Jackson, R. F. W.; Sutter, M. A.; See-
bach, D. Liebigs Ann. Chem. 1985, 2313; (f) Paterson, I.;
Lister, M. A.; McClure, C. K. Tetrahedron Lett. 1986, 27,
4787; (g) Corey, E. J.; Imwinkelreid, R.; Pikul, S.; Xiang,
Y. B. J. Am. Chem. Soc. 1989, 111, 5493; (h) Oppolzer,
W.; Blagg, J.; Rodriguez, I.; Walther, E. J. J. Am. Chem.
Soc. 1990, 112, 2767; (i) Evans, D. A.; Rieger, D. L.;
Bilodeau, M. T.; Urpi, F. J. Am. Chem. Soc. 1991, 113,
1047; (j) Ghosh, A. K.; Duong, T. T.; McKee, S. P. J.
Chem. Soc., Chem. Commun. 1992, 1673; (k) Abiko, A.;
Liu, J.-F.; Masamune, S. J. Org. Chem. 1996, 61, 2590; (l)
Crimmins, M. T.; Chaudhary, K. Org. Lett. 2000, 2, 775
and references cited therein.
3. For anti-aldol reactions, see: (a) Meyers, A. I.;
Yamamoto, Y. Tetrahedron 1984, 40, 2309; (b) Helm-
chen, G.; Leikauf, U.; Taufer-Knopfel, I. Angew. Chem.,
Int. Ed. Engl. 1985, 24, 874; (c) Gennari, C.; Bernardi, A.;
Colombo, L.; Scolastico, C. J. Am. Chem. Soc. 1985, 107,
5812; (d) Oppolzer, W.; Marco-Contelles, J. Helv. Chim.
Acta 1986, 69, 1699; (e) Masamune, S.; Sato, T.; Kim, B.
M.; Wollman, T. A. J. Am. Chem. Soc. 1986, 108, 8279;
(f) Danda, H.; Hansen, M. M.; Heathcock, C. H. J. Org.
Chem. 1990, 55, 173; (g) Corey, E. J.; Kim, S. S. J. Am.
Chem. Soc. 1990, 112, 4976; (h) Corey, E. J.; Kim, S. S.
Tetrahedron Lett. 1990, 31, 3715; (i) Meyers, A. G.;
Widdowson, K. L. J. Am. Chem. Soc. 1990, 112, 9672; (j)
Duthaler, R. O.; Herold, P.; Helfer, S.-W.; Riediker, M.
Helv. Chim. Acta 1990, 73, 659; (k) Walker, M. A.;
Heathcock, C. H. J. Org. Chem. 1991, 56, 5747; (l)
Braun, M.; Sacha, H. Angew. Chem., Int. Ed. Engl. 1991,
In summary, we devised a chelation-controlled ester-
derived titanium enolate-based highly diastereoselective
syn-aldol reaction with various aldehydes. The current
methodology is quite practical due to the ready
availability of optically pure chiral auxiliary and use of
inexpensive TiCl4 as the key reagent. Further mechanis-
tic investigations, effects of various sulfonamido func-
tionalities and synthetic applications are underway in
our laboratories.
Acknowledgements
Financial support for this work was provided by the
National Institutes of Health (GM 53386).
References
1. (a) Crimmins, S. T.; Choy, A. L. J. Am. Chem. Soc. 1999,
121, 5653; (b) Sulikowski, G. A.; Lee, W.-M.; Jin, B.;