H. Laqua et al. / Journal of Organometallic Chemistry 624 (2001) 96–104
103
2.14. Deprotection of carbamate 13a;
(1R,5R,6R)-1-methyl-2,3-benzobicyclo[3.3.0]-
oct-2-ene-6-ol (15)
Cambridge Crystallographic Data Centre, CCDC no.
149313. Copies of this information may be obtained free
of charge from the Director, CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK (Fax: +44-1223-336033;
e-mail: deposit@ccdc.cam.ac.uk or www: http:/
/www.ccdc.cam.ac.uk).
Methanesulfonic acid (21 mg, 0.23 mmol) was added
to a solution of 77 mg (0.22 mmol) of the carbamate 13a
in 3 ml of methanol. After 2 h of refluxing, potassium
carbonate (90 mg, 0.67 mmol) was added and the
reaction mixture was refluxed for additional 2.5 h. The
solvent was evaporated and the residue suspended in 5
ml of diethyl ether. The precipitate was filtered off and
washed with diethyl ether. The solvent was removed
from the filtrate and after column chromatography with
diethyl ether/petroleum ether (1:4) the carbamate (−)-
15 (27 mg, 66%) was obtained as a colourless oil.
HR-MS Calc. for C13H16O: 188.1199. Found: 188.1196.
[h]D20= −63.0 (c=0.61, CH2Cl2). IR (w˜/cm−1, film):
3368 (s); 2921 (s); 2861 (s); 1453 (m); 1019 (w); 769 (m).
1H-NMR (600 MHz): l=1.43 (s, 3H, 1-CH3); 1.57–
1.63 (m, 2H, 7-Hb, OH); 1.66–1.71 (m, 1H, 7-Ha); 1.90
(ddd, 1H, 8-Hb); 2.06 (ddd, 1H, 8-Ha); 2.31 (m, 1H,
5-H); 2.70 (dd, 1H, 4-Hb); 3.26 (dd, 1H, 4-Ha); 4.00 (m,
1H, 6-H); 7.12–7.20 (m, 4H, PhꢀH). 3J6,7a=4.2;
3J6,7b=3.6; 2J8a,8b=12.6; 3J8b,7b=2.4; 3J8a,7a=7.2;
2J4a,4b=17.2; 3J4a,5=9.6; 3J4b,5=2.4 Hz. 13C-NMR
(150 MHz): l=29.1 q (1-CH3); 34.7 t (C-7); 35.5 d
(C-4); 38.8 t (C-8); 55.6 s (C-1); 58.7 d (C-5); 81.5 d
(C-6); 123.0 d, 124.4 d, 126.5 d, 126.9 d, 141.5 s, 151.7
s (PhꢀC). EI-MS (m/z (%)): 188 (38) [M+]; 173 (13)
[(M−CH3)+]; 159 (77) [(M−C2H5)+]; 130 (100) [(M−
C3H5OH)+]; 115 (21) [(M−C3H5OH−CH3)+].
References
[1] (a) V.N. Drozd, Y.A. Ustynyuk, M.A. Tsel’eva, L.B. Dmitriev,
J. Gen. Chem. USSR 1968, 38, 2047; Zh. Obsch. Khim. 38
(1968) 2144. (b) V.N. Drozd, Y.A. Ustynyuk, M.A. Tsel’eva,
L.B. Dmitriev, J. Gen. Chem. USSR 39 (1969) 1951; Zh. Obsch.
Khim. 39 (1969) 1991.
[2] (a) W.F. Bailey, J.J. Patricia, V.C. DelGobbo, R.M. Jarret, P.J.
Okarma, J. Org. Chem. 50 (1985) 1999. (b) W.F. Bailey, T.T.
Nurmi, J.J. Patricia, W. Wang, J. Am. Chem. Soc. 109 (1987)
2442. (c) W.F. Bailey, A.M. Khanolkar, K. Gavaskar, T.V.
Ovaska, K. Rossi, Y. Thiel, K.B. Wiberg, J. Am. Chem. Soc. 113
(1991) 5720. (d) W.F. Bailey, M.J. Mealy, J. Am. Chem. Soc.
122 (2000) 6787. (e) G.S. Gil, U.M. Groth, J. Am. Chem. Soc.
122 (2000) 6789.
[3] Review: I. Marek, J. Chem. Soc. Perkin Trans. 1 (1999) 535.
[4] (a) J.E. Baldwin, J. Chem. Soc. Chem. Commun. (1976) 734. (b)
Review: C.D. Johnson, Acc. Chem. Res. 26 (1993) 476.
[5] (a) S. Klein, I. Marek, J.-F. Normant, J. Org. Chem. 59 (1994)
2925. (b) S. Klein, I. Marek, J.-F. Poisson, J.-F. Normant, J.
Am. Chem. Soc. 117 (1995) 8853. (c) S. Norsikian, I. Marek,
J.-F. Poisson, J.-F. Normant, J. Org. Chem. 62 (1997) 4898. (d)
C. Mu¨ck-Lichtenfeld, H. Ahlbrecht, Tetrahedron 52 (1996)
10025.
[6] (a) D. Hoppe, F. Hintze, P. Tebben, Angew. Chem. 102 (1990)
1457. (b) Review: D. Hoppe, T. Hense, Angew. Chem. 109
(1997) 2376; Angew. Chem. Int. Ed. Engl. 36 (1997) 2282.
[7] (a) M.J. Woltering, R. Fro¨hlich, D. Hoppe, Angew. Chem. 109
(1997) 1804; Angew. Chem. Int. Ed. Engl. 36 (1997) 1764. (b)
M.J. Woltering, R. Fro¨hlich, B. Wibbeling, D. Hoppe, Synlett
1998, 797. (c) M.J. Woltering, M. Oestreich, R. Fro¨hlich, D.
Hoppe, Helv. Chim. Acta 82 (1999) 1860. (d) S.H. Kleinfeld, E.
Wegelius, D. Hoppe, Helv. Chim. Acta 82 (1999) 2413. (e) K.
Tomooka, N. Komine, T. Nakai, Tetrahedron Lett. 38 (1997)
8939. (f) K. Tomooka, N. Komine, T. Sasaki, H. Shimizu, T.
Nakai, Tetrahedron Lett. 39 (1998) 9715.
[8] The principle could also be applied to 5-alkynyl carbamates: D.
Hoppe, M. Oestreich, Tetrahedron Lett. 39 (1998) 1745.
[9] Asymmetric cyclocarbolithiation reactions, using classical ap-
proaches to generate the enantioenriched, open-chain lithium
intermediate: (a) I. Coldham, R. Hufton, D.J. Snowden, J. Am.
Chem. Soc. 118 (1996) 5322. (b) I. Coldham, J.-C. Ferna`ndez,
D.J. Snowden, Tetrahedron Lett. 40 (1999) 1819. (c) R.W.
Hoffmann, R. Koberstein, K. Harms, J. Chem. Soc. Perkin
Trans. 2 (1999) 183. (d) A. Krief, B. Kenda, B. Remacle,
Tetrahedron Lett. 36 (1995) 7917.
[10] Review: S. Masamune, W. Choy, J.S. Petersen, L.R. Sita,
Angew. Chem. 97 (1985) 1.
[11] Other examples for efficient kinetic resolutions: (a) J. Haller, T.
Hense, D. Hoppe, Synlett (1993) 726. (b) T. Hense, D. Hoppe,
Synthesis (1997) 1394.
2.15. (R) Mosher ester of (−)-15
Pyridine (0.1 ml) was added to 8 mg (0.04 mmol) of
the alcohol (−)-15 in 0.5 ml of dichloromethane. After
addition of 10 mg (0.04 mmol) of (R)-a-methoxy-a-tri-
fluoromethylphenylacetyl chloride, the mixture was
stirred for 24 h. Direct chromatographic separation
[diethyl ether–petroleum ether (1:4)] afforded 16 mg
(100%) of the Mosher ester of (−)-15 as a colourless oil.
ESI-HR-MS calc. for C23H33NO3+Na+: 427.1560.
Found: 427.1585. 1H-NMR (600 MHz): l=1.51 (s, 3H,
1-CH3); 1.56–1.71 (m, 2H, 7-H2); 1.82–1.96 (m, 2H,
8-H2); 2.43 (m, 1H, 5-H); 2.76 (m, 1H, 4-Hb); 3.35 (dd,
1H, 4-Ha); 3.57 (s, 3H, OCH3); 5.16 (m, 1H, 6-H);
7.10–7.58 (m, 9H, PhꢀH). 19F-NMR (564 MHz): l= −
71.85 (s, 3F, CF3). No second diastereomer could be
detected. ESI-MS (m/z (%)): 427 (100) [M++Na]; 171
(32) [(M−C10H8F3O3)+].
[12] The (−)-sparteine complex of lithiomethylindene delivers car-
bonyl adducts with high enantiomeric excesses, but all attempts
to achieve enantioselective alkylations have failed so far [13].
Despite that, (−)-sparteine was used, since better regioselectivi-
ties were observed in comparison to the lithium TMEDA
complex.
3. Supplementary material
Crystallographic data (excluding structure factors) for
the structural analysis have been deposited with the