known to perform as multiphoton absorbing systems.1b
Besides their electronic properties, these scaffolds encom-
pass a wide range of biological properties2ꢀ4 that make
them particularly attractive in the field of organic synthesis.
To date, the literature reports the following methods for
their preparation (Scheme 1): (a) oxidative cyclization of
N-acylhydrazones with various oxidizing agents such as
hypervalent iodines,5aꢀe chloramine T,5f ceric ammonium
nitrate,5g FeCl3,5h tetravalent lead reagents,5i,j Br2,5k
KMnO4 under microwave condition,5l or HgO/I2;5m (b)
cyclodehydration of 1,2-diacylhydrazines with reagents
such as thionyl chloride, PPA, phosphorus oxychloride,
or sulfuric acid;6 (c) direct reaction of carboxylic acids or
acyl chlorides with acid hydrazides or hydrazines;7 (d)
CꢀH activation/Cu mediated arylation of preformed
2-substituted 1,3,4-oxadiazole;8 and (e) electrophilic sub-
stitution of 2-substituted-5-trimethylsilyl-1,3,4-oxadiazole
toward various electrophiles.9
as being no longer inert and able to be viewed as dormant
synthetic equivalents of many reactive functional groups.
Development of various catalytic processes to activate the
ubiquitously available bond has emerged as the most
effective tool, due to operational simplicity and avoidance
of the arduous substrate preactivation steps, thereby im-
proving the overall efficiency of a targeted synthesis.10
In this context, however, the vast majority of the focus has
been directed toward the transition metal catalyzed fu-
nctionalization of the sp2 CꢀH bonds of arenes and
heteroarenes.10 In contrast, analogous addition across an
imineCꢀN throughfunctionalization of a C(sp2)ꢀH bond
is relatively rare. Some examples of imine C(sp2)ꢀH
functionalization are, a Pd catalyzed addition of 2-methyl
aza-arenes to imines,11a benzyl nitriles with sulfonyl-
imines,11b,c rhodium catalyzed oxidative coupling of aro-
matic imines with alkynes,11d and 2-pyridyl.11e Moreover,
compared to late transition metal catalysts, first row
transition metal catalysts, especially with Cu, have been
less explored toward CꢀH functionalization.12 Barring
one example of CꢀC bond formation involving C(sp2)ꢀH
of imine13 there is no report on CꢀO bond formation.
Mostly, substrates possessing imine functionality have
been observed to undergo skeletal rearrangement14aꢀc or
Scheme 1. Various Methods of Preparation of 2,5-Substituted
1,3,4-Oxadiazoles
(10) (a) Metal-Catalyzed Cross-Coupling Reactions; Diederich, F.,
Stang, P. J., Eds.; Wiley-VCH: Weinheim, 1998. (b) Handbook of C-H
transformations; Dyker, G., Ed.; Wiley-VCH: Weinheim, 2005. (c) Topics
in Current Chemistry; Yu, J.-Q., Shi, Z., Eds.; Springer: 2010; Vol. 292. (d)
Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879. (e) Lyons,
T. W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (f) Ackermann, L.
Chem. Rev. 2011, 111, 1315. (g) Sun, C. -L.; Li, B. -J.; Shi, Z. -J. Chem.
Commun. 2010, 46, 677. (h) Beccalli, E. M.; Broggini, G.; Martinelli, M.;
Sottocornola, S. Chem. Rev. 2007, 107, 5318. (i) Alberico, D.; Scott,
M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. (j) Jazzar, R.; Hitce, J.;
Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem.;Eur. J. 2010,
16, 2654. (k) Giri, R.; Shi, B. -F.; Engle, K. M.; Maugel, N.; Yu, J. -Q.
Chem. Soc. Rev. 2009, 38, 3242. (l) Chem, X.; Enhle, K. M.; Wanh, D. -
H.; Yu, J. -Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (m) Thansandote,
P.; Lautens, M. Chem.;Eur. J. 2009, 15, 5874. (n) Balcells, D.; Clot, E.;
Eisenstein, O. Chem. Rev. 2010, 110, 749. (o) Beck, E. M.; Gaunt, M. J.
Top. Curr. Chem. 2010, 292, 85. (p) Daugulis, O.; Do, H.-Q.; Shabashov,
D. Acc. Chem. Res. 2009, 42, 1074. (q) Colby, D. A.; Bergman, R. G.;
ꢀ
Yet, the disadvantages associated with these methodol-
ogies, owing to the use of expensive, hazardous materials
or cumbersome multistepped processes, bind them to a
limited synthetic scope. Although the Cu mediated direct
arylation/CꢀH activation path (route d)8 seems advanta-
geous, it uses preformed 2-substituted 1,3,4-oxadiazoles as
the precursors which are difficult to prepare.
Ellman, J. A. Chem. Rev. 2010, 110, 624. (r) Dıaz-Requejo, M. M.; Perez,
´
P. J. Chem. Rev. 2008, 108, 3379. (s) Shilov, A. E.; Shul’pin, G. B. Chem.
Rev. 1997, 97, 2879. (t) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev.
€
2011, 111, 1596. (u) Wencel-Delord, J.; Droge, T.; Liu, F.; Glorius, F.
Chem. Soc. Rev. 2011, 40, 4740.
(11) (a) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.;
Of late the transition metal catalyzed direct functiona-
lization of otherwise unreactive CꢀH has attracted much
attention from an atom-economic point of view, for an
overall streamlining of sustainable synthesis. To add to it,
the great advances made toward the transition metal
catalyzed activation have led to the organic CꢀH bonds
Huang, H. J. Am. Chem. Soc. 2010, 132, 3650. (b) Aydin, J.; Conrad,
€
C. S.; Szabo, K. J. Org. Lett. 2008, 10, 5175. (c) Aydin, J.; Szabo, K. J.
Org. Lett. 2008, 10, 2881. (d) Fukutani, T.; Umeda, N.; Hirano, K.;
Satoh, T.; Miura, M. Chem. Commun. 2009, 5141. (e) Tsai, A. S.;
Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2011, 133, 1248.
(12) For some recent examples, see: (a) Zhang, L.; Ang, G. Y.; Chiba,
S. Org. Lett. 2010, 12, 3682. (b) Allen, C. P.; Benkovics, T.; Turek, A. K.;
Yoon, T. P. J. Am. Chem. Soc. 2009, 131, 12560. (c) Monguchi, D.;
Fujiwara, T.; Furukawa, H.; Mori, A. Org. Lett. 2009, 11, 1607. (d)
Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932. (e)
Guo, S.; Qian, B.; Xie, Y.; Xia, C.; Huang, H. Org. Lett. 2010, 13, 522. (f)
Chen, X.; Hao, X. -S.; Goodhue, C. E.; Yu, J. -Q. J. Am. Chem. Soc.
2006, 128, 6790. (g) King, A. E.; Huffman, L. M.; Casitas, A.; Costas,
M.; Ribas, X.; Stahl, S. S. J. Am. Chem. Soc. 2010, 132, 12068. (h)
Armstrong, A.; Collins, J. C. Angew. Chem., Int. Ed. 2010, 49, 2282. (i)
Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11, 5178. (j) Kawano, T.;
Hirano, K.; Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010, 132, 6900. (k)
Fukuzawa, S.; Shimizu, E.; Atsuumi, Y.; Haga, M.; Ogata, K. Tetra-
hedron Lett. 2009, 50, 2374. (l) Do, H. -Q.; Daugulis, O. J. Am. Chem.
Soc. 2007, 129, 12404.
(6) (a) Al-Talib, M.; Tashtoush, H.; Odeh, N. Synth. Commun. 1990,
20, 1811. (b) Kerr, V. N.; Ott, D. G.; Hayes, F. N. J. Am. Chem. Soc.
1960, 82, 186. (c) Short, F. W.; Long, L. M. J. Heterocycl. Chem. 1969, 6,
707. (d) Klingsberg, E. J. Am. Chem. Soc. 1958, 80, 5786. (e) Reddy,
C. K.; Reddy, P. S. N.; Ratnam, C. V. Synthesis 1983, 842.
(7) (a) Tandon, V. K.; Chhor, R. B. Synth. Commun. 2001, 31, 1727.
(b) Mashraqui, S. H.; Ghadigaonkar, S. G.; Kenny, R. S. Synth.
Commun. 2003, 33, 2541. (c) Bentiss, F.; Lagrenee, M.; Barbry, D.
Synth. Commun. 2001, 31, 935. (d) Kangani, C. O.; Kelley, D. E.; Day,
B. W. Tetrahedron Lett. 2006, 47, 6497.
(8) Kawano, T.; Yoshizumi, T.; Hirano, K.; Satoh, T.; Miura, M.
Org. Lett. 2009, 11, 3072.
(9) Zarudnitskii, E. V.; Pervak, I. I.; Merkulov, A. S.; Yurochenko,
A. A. Tetrahedron Lett. 2008, 64, 10431.
(13) Yotphan, S.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2009, 11,
1511.
Org. Lett., Vol. 13, No. 22, 2011
5977