J. Am. Chem. Soc. 1999, 121, 7423-7424
7423
Scheme 1
Total Synthesis of (-)-Cylindrocyclophane F
Amos B. Smith, III,* Sergey A. Kozmin, and Daniel V. Paone
Department of Chemistry, Monell Chemical Sciences Center,
and Laboratory on the Structure of Matter, UniVersity of
PennsylVania, Philadelphia, PennsylVania 19104
ReceiVed May 10, 1999
The cylindrocyclophanes A-F, recently isolated by Moore and
co-workers from Cylindrospermum licheniforme,1 comprise a
unique family of natural products possessing a 22-membered
[7,7]-paracyclophane ring. Although a wide variety of cyclophanes
have been prepared2,3 since their initial synthesis by Cram and
Steinberg in 1951,4 the cylindrocyclophanes represent the first
examples isolated from a natural source. Structural assignments,
including complete relative and absolute stereochemistry, were
based on extensive NMR studies1b in conjunction with CD
spectroscopy and X-ray crystallography.1a In addition to their
novel architecture, the cylindrocyclophanes display in vitro
cytotoxicity against the KB and LoVo tumor cell lines.1a
Captivated both by the structure and the promising biological
profile, we initiated a program directed at their synthesis. Herein,
we disclose the first total synthesis of (-)-cylindrocyclophane F
(1).
Application of two versions of the Kowalski ester chain homolo-
gation9,10 (vide infra) would provide access to siloxy acetylene 5
and iodide 9; the latter, in turn, would be coupled with known
ethoxycyclobutenone 811 to furnish 6.
From the outset we planned to take advantage of the C2
symmetry of the cylindrocyclophane skeleton (Scheme 1).
Disconnection at the C(4-5) and C(17-18) σ linkages revealed
resorcinol 4 as a possible common advanced intermediate for
iodide 2 and tosyl hydrazone 3. For cyclophane assembly we
envisioned a two-step process,5 involving union of 2 and 3 via
reductive alkylation a la Myers,6 followed by a ring-closing
metathesis (RCM).7 Resorcinol 4, possessing the requisite ste-
reogenic centers securely installed, would, in turn, be constructed
from fragments 5 and 6 via a Danheiser benzannulation.8
Our point of departure entailed alkylation of (+)-1012 (>98%
de) with allyl bromide (Scheme 2),13 followed by removal of the
Scheme 2
(1) (a) Moore, B. S.; Chen, J.-L.; Patterson, G. M.; Moore, R. M.; Brinen,
L. S.; Kato, Y., Clardy, J. J. Am. Chem. Soc. 1990, 112, 4061. (b) Moore, B.
S.; Chen, J.-L.; Patterson, G. M.; Moore, R. E. Tetrahedron 1992, 48, 3001.
(c) Bobzin, S. C.; Moore, R. E. Tetrahedron 1993, 49, 7615.
(2) For the preparation of related [7, 7]-paracyclophanes, see: (a) Schubert,
W. B.; Sweeney, W. A.; Latourette, H. K. J. Am. Chem. Soc. 1954, 76, 5462.
(b) Staab, H. A.; Matzke, G.; Frieger, C. Chem. Ber. 1987, 120, 89. (c) Mascal,
M.; Kerdelhue, J.-L.; Batsanov, A. S.; Begley, M. J. J. Chem. Soc., Perkin
Trans. 1 1996, 1141.
chiral auxiliary and conversion to ester (-)-714 (72% yield, three
(3) (a) Keehn, P. M., Rosenfeld, S. M., Eds. Cyclophanes; Academic
Press: New York, 1983. (b) Vogtle, F. Cyclophane Chemistry; Wiley: New
York, 1993.
steps). Best results for the initial Kowalski ester homologation9
(4) Cram, D. J.; Steinberg, H. J. Am. Chem. Soc. 1951, 73, 5691.
(5) To date all attempts to prepare the macrocycle in one step by a variety
of dimerization processes have been unsuccessful. Paone, D. V. Ph.D.
Dissertation, University of Pennsylvania, 1998.
(6) Myers, A. G.; Movassaghi, M. J. Am. Chem. Soc. 1998, 120, 8891.
(7) For recent reviews, see: (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998,
54, 4413. (b) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371. (c)
Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2037. (d)
Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446.
(8) (a) Danheiser, R. L.; Gee, S. K. J. Org. Chem. 1984, 49, 1672. (b)
Danheiser, R. L.; Gee, S. K., Perez, J. J. J. Am. Chem. Soc. 1986, 108, 806.
(c) Danheiser, R. L.; Nishida, A.; Savariar, S.; Trova, M. P. Tetrahedron Lett.
1988, 29, 4917. (d) Danheiser, R. L.; Casebier, D. S.; Huboux, A. H. J. Org.
Chem. 1994, 59, 4844.
(9) (a) Kowalski, C. J.; Haque, M. S.; Fields, K. W. J. Am. Chem. Soc.
1985, 107, 1429. (b) Kowalski, C. J.; Lal, G. S.; Haque, M. S. J. Am. Chem.
Soc. 1986, 108, 7127. (c) Kowalski, C. J.; Lal, G. S. J. Am. Chem. Soc. 1988,
110, 3693. (d) Kowalski, C. J.; Reddy, R. E. J. Org. Chem. 1992, 57, 7194.
(10) For a review of ynolate anions, see: Shido, M. Chem. Soc. ReV. 1998,
27, 367.
(11) Wasserman, H. H.; Piper, J. U.; Dehmlow, E. V. J. Org. Chem. 1973,
38, 1451.
(12) Imide (+)-10 was prepared in 97% yield from (1S,2R)-(+)-norephe-
drine derived oxazolidinone and hexanoyl chloride (n-BuLi, THF, -78 °C).
(13) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982,
104, 1737.
(14) The structural assignment given to each new pure compound is in
1
accord with its IR, H, and 13C NMR, and high-resolution mass spectra.
10.1021/ja991538b CCC: $18.00 © 1999 American Chemical Society
Published on Web 07/27/1999