precursor 10a in 73% yield.8 To investigate the effect of the
phenylthio group in the radical cyclization, radical precursor
11 having no substituent at the olefin terminus was also
prepared from 9a by employing Tebbe reagent9 even in low
yield.10
Scheme 3a
The crucial radical cyclization was next examined (Scheme
4). On treatment of 10a with Bu3SnH in the presence of
Scheme 4a
a Key: (a) see, ref 4; (b) LHMDS, 2-bromobenzyl bromide, THF
for 7a; LHMDS, 2-bromo-4-methoxybenzyl bromide, THF for 7b;
(c) TBAF, THF; (d) PCC, CH2Cl2; (e) PhSCH2P(O)Ph2, BuLi,
CeCl3, THF, then NaH, THF; (f) Tebbe reagent, THF.
catalyzed esterification of 5, protection of the amino group
with benzyl chloroformate, and silylation of the hydroxyl
group provided fully protected amino acid 6.4 The lithium
enolate of 6 was alkylated with 2-bromobenzyl bromide to
give a 4:1 inseparable mixture of 7a and its diastereomer in
96% yield.5,6 Treatment of the mixture with TBAF followed
by oxidation of the resulting alcohol 8a afforded ketone 9a
in 97% yield. Horner-Wittig reaction of 9a with the lithium
a Key: (a) Bu3SnH, AIBN, benzene, reflux. 13a, 71%; 14, 20%;
15, 17%.
AIBN in boiling benzene, aryl radical cyclization proceeded
smoothly, leading to exclusive formation of 6-exo cyclization
product 13a in 71% yield. In contrast, treatment of 11 with
Bu3SnH under similar conditions gave 6-exo cyclization
product 14 and olefin 15 in 20% and 17% yields, respec-
tively. Olefin 15 might result from a 1,5-hydrogen shift of
intermediary radical D. These results clearly show that the
phenylthio group of 10a is essential for efficient 6-exo
cyclization, probably as a result of its radical-stabilization
ability in radical E.
7
salt of PhSCH2P(O)Ph2 in the presence of CeCl3 followed
by treatment of the adduct with NaH afforded radical
(1) For isolation of 1, see: (a) Gulavita, N.; Hori, A.; Shimizu, Y.; Laszlo,
P.; Clardy, J. Tetrahedron Lett. 1988, 29, 4381. For synthesis or synthetic
studies of 1, see: (b) Takano, S.; Inomata, K.; Sato, T.; Ogasawara, K. J.
Chem. Soc., Chem. Commun. 1989, 1591. (c) Takano, S.; Inomata, K.; Sato,
T.; Takahashi, M.; Ogasawara, K. J. Chem. Soc., Chem. Commun. 1990,
290. (d) Honda, T.; Yamamoto, A.; Cui, Y.; Tsubuki, M. J. Chem. Soc.,
Perkin Trans. 1 1992, 531. (e) Hulme, A. N.; Henry, S. S.; Meyers, A. I.
J. Org. Chem. 1995, 60, 1265. (f) Meyers, A. I.; Schmidt, W.; Santiago, B.
Heterocycles 1995, 40, 525. (g) Fadel, A.; Arzel, P. Tetrahedron: Asymmetry
1995, 6, 893. (h) Hallinan, K. O.; Honda, T. Tetrahedron 1995, 51, 12211.
(i) Node, M.; Imazato, H.; Kurosaki, R.; Kawano, Y.; Inoue, T.; Nishide,
K.; Fuji, K. Heterocycles 1996, 42, 811. (j) Shiotani, S.; Okada, H.;
Nakamata, K.; Yamamoto, T.; Sekino, F. Heterocycles 1996, 43, 1031. (k)
Fadel, A.; Arzel, P. Tetrahedron: Asymmetry 1997, 8, 371. (l) Shimizu,
M.; Kamikubo, T.; Ogasawara, K. Heterocycles 1997, 46, 21.
(2) (a) Ishibashi, H.; Kobayashi, T.; Takamasu, D. Synlett 1999, 1286.
(b) Ishibashi, H.; Kobayashi, T.; Nakashima, S.; Tamura, O. J. Org. Chem.
2000, 65, 9022.
With these results of model experiments in hand, we turned
our attention to the total synthesis of (-)-aphanorphine (1).
Alkylation of the lithium enolate of 6 with 2-bromo-4-
methoxybenzyl bromide11 gave a 4:1 mixture of 7b and its
diastereomer in 91% yield. After desilylation, recrystalliza-
tion from n-hexane-Et2O afforded alcohol 8b in diastereo-
merically pure form in 68% yield. Alcohol 8b was led to
radical precursor 10b by the same procedure as that used
(3) Pal, S.; Mukhopadhyaya, J. K.; Ghatak, U. R. J. Org. Chem. 1994,
59, 2687.
(4) Mayer, S. C.; Ramanjulu, J.; Vera, M. D.; Pfizenmayer, A. J.; Joullie´,
M. M. J. Org. Chem. 1994, 59, 5192.
(5) Nagumo, S.; Mizukami, M.; Akutsu, N.; Nishida, A.; Kawahara, N.
Tetrahedron Lett. 1999, 40, 3209.
(6) The stereochemistry of the major isomer 7a was established by three-
step transformation into 12 in 57% yield. See ref 5.
(8) Without CeCl3, the reaction gave only a trace amount of 10a, probably
as a result of facile enolization of ketone 9a.
(9) For a review, see: Kelly, S. E. In ComprehensiVe Organic Synthesis;
Trost, B. M., Fleming, I., Heathcock, C. H., Eds.; Pergamon: Oxford, 1991;
Vol. 1, p 743.
(10) Neither Wittig reaction with Ph3PdCH2 nor Peterson reaction with
TMSCH2Li took place.
(11) Ghosh, A. K.; Mukhopadhyaya, J. K.; Ghatak, U. R. J. Chem. Soc.,
Perkin Trans. 1 1997, 2747.
(7) Grayson, J. I.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1977, 2263.
2428
Org. Lett., Vol. 3, No. 16, 2001