Published on Web 05/25/2002
A General and Efficient Copper Catalyst for the Amidation of
Aryl Halides
Artis Klapars, Xiaohua Huang, and Stephen L. Buchwald*
Contribution from the Department of Chemistry, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
Received February 27, 2002
Abstract: An experimentally simple and inexpensive catalyst system was developed for the amidation of
aryl halides by using 0.2-10 mol % of CuI, 5-20 mol % of a 1,2-diamine ligand, and K3PO4, K2CO3, or
Cs2CO3 as base. Catalyst systems based on N,N′-dimethylethylenediamine or trans-N,N′-dimethyl-1,2-
cyclohexanediamine were found to be the most active even though several other 1,2-diamine ligands could
be used in the easiest cases. Aryl iodides, bromides, and in some cases even aryl chlorides can be efficiently
amidated. A variety of functional groups are tolerated in the reaction, including many that are not compatible
with Pd-catalyzed amidation or amination methodology.
Introduction
Both the Ullmann reaction (copper-catalyzed N-arylation of
amines)6 and the related Goldberg reaction (copper-catalyzed
Transition metal catalyzed C-N bond-forming processes are
extensively utilized in the medicinal chemistry and process
development groups of pharmaceutical companies and in
academic laboratories. Despite significant improvements in the
palladium-catalyzed N-arylation of amines,1 some limitations
still remain. For example, aryl halides containing free N-H
groups2 as well as certain heterocyclic halides3 are difficult
amination substrates. The palladium-catalyzed arylation of
amides, another important class of nitrogen nucleophiles, is
encumbered by further limitations. Most notably, the amidation
of electron-rich or ortho-substituted electronically neutral aryl
halides is difficult.4 Moreover, the high cost of palladium invites
less expensive alternatives.5 Finally, removal of palladium
residues from polar reaction products, particularly in the late
stage of the synthesis of a pharmaceutical substance, can be
challenging.
N-arylation of amides)7 predate the palladium-catalyzed ami-
nation methodology by many decades. While applications of
the Ullmann and Goldberg reactions in academic and industrial
laboratories are well-documented,8 the methods have remained
relatively undeveloped. The necessity to use temperatures as
high as 210 °C,9 highly polar solvents, and often large amounts
of copper reagents, as well as the modest yields often realized,
have undoubtedly prevented these reactions from being em-
ployed to their full potential. An important alternative has been
reported recently where aryl boronic acids are used as arylating
agents instead of aryl halides.10 Unfortunately, the method
suffers from high cost and poor availability of functionalized
boronic acids, as well as relatively limited scope of the process.
The traditional protocols for the Goldberg amidation reaction
prescribe simple copper salts or often copper metal as the
catalyst. It is surprising that very few reports have focused on
deliberate use of ligands to facilitate the copper-catalyzed aryl
amidation reaction.11 We have previously disclosed Ullmann-
type methodology for the N-arylation of imidazoles using a 1,10-
(1) Reviews: (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L.
Acc. Chem. Res. 1998, 31, 805. (b) Hartwig, J. F. Angew. Chem., Int. Ed.
Engl. 1998, 37, 2046. (c) Yang, B. H.; Buchwald, S. L. J. Organomet.
Chem. 1999, 576, 125. (d) Muci, A. R.; Buchwald, S. L. Practical Palladium
Catalysts for C-N and C-O Bond Formation. In Topics in Current
Chemistry; Miyaura, N., Ed.; Springer-Verlag: Berlin, 2002; Vol. 219, p
133.
(6) N-Arylation of anilines: (a) Ullmann, F. Ber. Dtsch. Chem. Ges. 1903,
36, 2382. (b) Gauthier, S.; Fre´chet, J. M. J. Synthesis 1987, 383. (c) Paine,
A. J. J. Am. Chem. Soc. 1987, 109, 1496. (d) Gujadhur, R.; Venkataraman,
D.; Kintigh, J. T. Tetrahedron Lett. 2001, 42, 4791. N-Arylation of
alkylamines: (e) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem.
Soc. 1998, 120, 12459. (f) Arterburn, J. B.; Pannala, M.; Gonzalez, A. M.
Tetrahedron Lett. 2001, 42, 1475. (g) Kwong, F. Y.; Klapars, A.; Buchwald,
S. L. Org. Lett. 2002, 4, 581. Arylation of ammonia: (h) Lang, F.; Zewge,
D.; Houpis, I. N.; Volante, R. P. Tetrahedron Lett. 2001, 42, 3251.
(7) (a) Goldberg, I. Ber. Dtsch. Chem. Ges. 1906, 39, 1691. (b) Freeman, H.
S.; Butler, J. R.; Freedman, L. D. J. Org. Chem. 1978, 43, 4975. (c)
Dharmasena, P. M.; Oliveira-Campos, A. M.-F.; Raposo, M. M. M.;
Shannon, P. V. R. J. Chem. Res. (S) 1994, 296. (d) Ito, A.; Saito, T.; Tanaka,
K.; Yamabe, T. Tetrahedron Lett. 1995, 36, 8809. (e) Sugahara, M.; Ukita,
T. Chem. Pharm. Bull. 1997, 45, 719. (f) Lange, J. H. M.; Hofmeyer, L.
J. F.; Hout, F. A. S.; Osnabrug, S. J. M.; Verveer, P. C.; Kruse, C. G.;
Feenstra, R. W. Tetrahedron Lett. 2002, 43, 1101.
(2) Examples are rare and include the following: (a) Ward, Y. D.; Farina, V.
Tetrahedron Lett. 1996, 37, 6993. (b) Willoughby, C. A.; Chapman, K. T.
Tetrahedron Lett. 1996, 37, 7181. (c) Batch, A.; Dodd, R. H. J. Org. Chem.
1998, 63, 872. (d) Prashad, M.; Hu, B.; Lu, Y.; Draper, R.; Har, D.; Repic,
O.; Blacklock, T. J. J. Org. Chem. 2000, 65, 2612. (e) Link, J. T.; Sorensen,
B.; Liu, G.; Pei, Z.; Reilly, E. B.; Leitza, S.; Okasinski, G. Bioorg. Med.
Chem. Lett. 2001, 11, 973.
(3) (a) Watanabe, M.; Yamamoto, T.; Nishiyama, M. Chem. Commun. 2000,
133. (b) Luker, T. J.; Beaton, H. G.; Whiting, M.; Mete, A.; Cheshire, D.
R. Tetrahedron Lett. 2000, 41, 7731.
(4) (a) Shakespeare, W. C. Tetrahedron Lett. 1999, 40, 2035. (b) Yin, J.;
Buchwald, S. L. Org. Lett. 2000, 2, 1101. (c) Artamkina, G. A.; Sergeev,
A. G.; Beletskaya, I. P. Tetrahedron Lett. 2001, 42, 4381. (d) Cacchi, S.;
Fabrizi, G.; Goggiamani, A.; Zappia, G. Org. Lett. 2001, 3, 2539.
(5) Ni-catalyzed amination of aryl chlorides: (a) Wolfe, J. P.; Buchwald, S.
L. J. Am. Chem. Soc. 1997, 119, 6054. (b) Brenner, E.; Schneider, R.;
Fort, Y. Tetrahedron 1999, 55, 12829. (c) Lipshutz, B. H.; Ueda, H. Angew.
Chem., Int. Ed. 2000, 39, 4492.
(8) For a review, see: Lindley, J. Tetrahedron 1984, 40, 1433.
(9) Yamamoto, T.; Kurata, Y. Can. J. Chem. 1983, 61, 86.
(10) Lam, P. Y. S.; Deudon, S.; Hauptman, E.; Clark, C. G. Tetrahedron Lett.
2001, 42, 2427 and references therein.
9
10.1021/ja0260465 CCC: $22.00 © 2002 American Chemical Society
J. AM. CHEM. SOC. 2002, 124, 7421-7428
7421