1414
J. M. Bergman et al. / Bioorg. Med. Chem. Lett. 11 (2001) 1411–1415
Table 2. FPTase and GGPTase-I inhibition for piperazinones 9a and
10a–c
Acknowledgements
The authors are grateful to K. D. Anderson, P. A.
Ciecko, A. B. Coddington, G. M. Smith, H. G. Ramjit,
C. W. Ross III, B.-L. Wan, and M. M. Zrada for ana-
lytical support, J. R. Huff, D. C. Heimbrook, and A. I.
Oliff for their support of this work, and M.A. Guttman
for manuscript assistance.
Compd
X
Y
R
FPTase
IC50 (nM)a
GGPTase-I
IC50 (nM)b
8a
9a
10a
10b
10c
CN
OPh
H
H
H
OPh
CN
OPh
OPh
OPh
3-Cl
3-Cl
3-Cl
4-Cl
7
9
18
809
65
136
155
References and Notes
1230
670
5770
1. Rodenhuis, S. Semin. Cancer Biol. 1992, 3, 241.
4-CF3
2. (a) Kato, K.; Cox, A. D.; Hisaka, M. M.; Graham, S. M.;
Buss, J. E. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 6403. (b)
Rowinsky, E. K.; Windle, J. L.; Von Hoff, D. D. J. Clin.
Oncol. 1999, 17, 3631.
aSee footnote a in Table 1.
bSee footnote b in Table 1.
3. (a) Recent reviews: Oliff, A. Biochim. Biophys. Acta 1999
1423, C19. (b) End, D. W. Invest. New Drugs 1999, 17, 241. (c)
Gibbs, J. B. J. Clin. Invest. 2000, 105, 9. (d) Dinsmore, C. J.
Curr. Opin. Oncol. Endocr. Metab. Invest. Drugs 2000, 2, 26.
(e) Bell, I. M. Expert Opin. Ther. Patents 2000, 10, 1813.
4. (a) Whyte, D. B.; Kirschmeier, P.; Hockenberry, T. N.;
Nunez-Oliva, I.; James, L.; Catino, J. J.; Bishop, R. B.; Pai, J.-
K. J. Biol. Chem. 1997, 272, 14459. (b) Sun, J.; Qian, T.;
Hamilton, A. D.; Sebti, S. M. Oncogene 1998, 16, 1467.
5. Williams, T. M.; Bergman, J. M.; Brashear, K.; Breslin,
M. J.; Dinsmore, C. J.; Hutchinson, J. H.; MacTough, S. C.;
Stump, C. A.; Wei, D. D.; Zartman, C. B.; Bogusky, M. J.;
Culberson, J. C.; Buser-Doepner, C.; Davide, J.; Greenberg,
I. B.; Hamilton, K. A.; Koblan, K. S.; Kohl, N. E.; Liu, D.;
Lobell, R. B.; Mosser, S. D.; O’Neill, T. J.; Rands, E.; Schaber,
M. D.; Wilson, F.; Senderak, E.; Motzel, S. L.; Gibbs, J. B.;
Graham, S. L.; Heimbrook, D. C.; Hartman, G. D.; Oliff, A. I.;
Huff, J. R. J. Med. Chem. 1999, 42, 3779.
6. (a) Huber, H. E.; Abrams, M.; Anthony, N.; Graham, S.;
Hartman, G.; Lobell, R.; Lumma, W.; Nahas, D.; Robinson,
R.; Sisko, J.; Heimbrook, D. C. Proc. Am. Assoc. Cancer Res.
2000, 41, Abstract 2838. (b) Huber, H. E.; Robinson, R.;
Watkins, A.; Nahas, D.; Abrams, M.; Buser, C.; Lobell, R.;
Patrick, D.; Anthony, N.; Dinsmore, C.; Graham, S.; Hart-
man, G.; Lumma, W.; Williams, T.; Heimbrook, D. C. J. Biol.
Chem., in press. (c) Williams, T. M. et al., in preparation.
7. Weissman, S. A.; Lewis, S.; Askin, D.; Volante, R. P.;
Reider, P. J. Tetrahedron Lett. 1998, 39, 7459.
in cells.6a,b The compounds in this series that were tes-
ted in the Rap1a processing assay were active with
MICs in the 0.3–3 mM range, confirming GGPTase-I
inhibition in cells. Interestingly, Rap1a inhibition was
not significantly greater than that for 1 in spite of these
compounds having greater in vitro potency towards
GGPTase-I. This is most likely due to their reduced cell
penetration in comparison to 1.
In anchorage-independent growth inhibition assays in
soft agar, 8a was less effective than 1 at blocking colony
formation of v-H-ras transformed RAT1 cells (IC90
8a=0.3 mM, IC90 1=0.1 mM), consistent with its
reduced FTase binding in cell culture (vide supra).
General cell cytotoxicity elicited by 8a is only observed
at ꢁ30-fold higher concentrations (ꢁ80% RAT1 cell
survival up to 10 mM as assessed by viability staining
with MTT). Interestingly, inhibition by 8a of K-ras
transformed cell colonies required only slightly higher
concentration (IC90=0.3–1 mM) than was required
for H-ras, resulting in a ratio of K-ras/H-ras IC90
which is lower than for previously characterized selective
N-arylpiperazinone FTIs5 (ratio ca. 1–3 vs 10–20). A
determination of whether this is the result of dual versus
selective prenyltransferase inhibition will require further
studies.
8. Boger, D. L.; Yohannes, D. J. Am. Chem. Soc. 1991, 113,
1427.
9. (a) Graham, S. L.; deSolms, S. J.; Giuliani, E. A.; Kohl,
N. E.; Mosser, S. D.; Oliff, A. I.; Pompliano, D. L.; Rands, E.;
Breslin, M. J.; Deanna, A. A.; Garsky, V. M.; Scholz, T. H.;
Gibbs, J. B.; Smith, R. L. J. Med. Chem. 1994, 37, 725. (b)
Lobell, R. B.; Gibson, R. et al., in preparation. The radiotracer
used in the assay is [125I] 4-{[5-({(2S)-4-(3-iodophenyl)-2-[2-
(methylsulfonyl)-ethyl]-5-oxopiperazin-1-yl}methyl)-1H-imi-
dazol-1-yl]methyl}benzonitrile, which has ꢁ50,000 high affi-
nity binding sites (apparent Kd of ꢁ1 nM) in the RAT1 cell
line. The non-specific binding signal, determined by the addi-
tion of 1000-fold excess unlabeled competitor FTI, is typically
5-fold lower than the specific binding signal. The assay pro-
vides comparable results using a variety of cell lines. Cells are
seeded at 200,000 cells per well in 24-well tissue culture plates
and cultured for 16 h. The radiotracer (ꢁ300–1000 Ci/mmol)
is diluted into culture media to a concentration of 1 nM, along
with the desired concentration of test FTI, and then added to
the cell monolayers. After a 4 h incubation at 37 ꢀC, the cells
are briefly rinsed with phosphate-buffered saline, removed
from the culture plate by trypsinization, and then subjected to
Conclusion
The inclusion of aryloxy substituents on the cyano-
benzyl portions of certain dual FPTase/GGPTase-I
inhibitors can substantially improve GGPTase-I inhi-
bitory potency while leaving the relatively high
intrinsic FPTase inhibitory potency unaffected. The
poor cell penetration seen in this series can be posi-
tively addressed by the inclusion of polar function-
ality within the aryloxy substituent. Further
modifications, leading to the deletion of the nitrile,
yield GGPTase-I selective compounds. The ability to
modulate the relative degree of FPTase and GGPTase-I
inhibition could prove important in the design of
antineoplasic drugs of the prenyl-protein transferase
inhibitor class.