9
200 mesh. 1H (13C) NMR spectra were recorded at 600 (150) and 400 (100) MHz on a Brucker spectrometer using CDCl3 and DMSO-d6 as a solvent. The 1H
and 13C chemical shifts were referenced to residual solvent signals at δH/C 7.26 /77.28 (CDCl3) and δH/C 2.51 /39.50 (DMSO-d6) relative to TMS as internal
standards. Coupling constants J [Hz] were directly taken from the spectra and are not averaged. Splitting patterns are designated as s (singlet), d (doublet), t
(triplet), q (quartet), m (multiplet) and br (broad).
General experimental procedure for the synthesis of products benzoxazoles (3a-v), naphthoxazoles (5a-f), benzothiazoles (8a-f) and benzimidazoles
(9a-c) using 3-nitropyridine as organocatalyst: A 25 mL RB was charged with a mixture of o-aminophenols 1a-h (1.0 mmol) or 1-amino-2-naphthol 4a
(1.0 mmol) or o-aminothiophenol 6a (1.0 mmol) or o-phenylenediamine 7a (1.0 mmol) and benzyl alcohols 2a-e, g-j or cinnamyl alcohol 2f (1.0 mmol)
along with 3-nitropyridine (0.1 mmol, 12.4 mg), NaOtBu (1.0 mmol, 96 mg) and DMSO (2 mL). The RB was loosely fitted with septum and then heated at
110 °C for 16 h. After completion of the reaction, the mixture was diluted with hot ethyl acetate (20 mL) and water (40 mL) and extracted with ethyl
acetate (3 × 10 mL). The combined organic layer was washed with brine (2 × 10 mL) and dried over anhysdrous Na2SO4. Solvent was removed under
reduced pressure and the remaining residue was purified by flash chromatography over silica gel using hexane / ethyl acetate = 9:1 (v/v) as an eluent to
obtain the desired products benzoxazoles 3a-v, naphthoxazoles 5a-f, benzothiazoles 8a-f and benzimidazoles 9a-c in high yields.
White solid, Rf = 0.70 (SiO2, Hexane/EtOAc = 9:1); m.p = 102 - 105 °C (Lit45 103 - 104 °C); 1H NMR (400 MHz, CDCl3): δ = 7.36 - 7.41 (m, 2H; 4-H,7-
H), 7.54 - 7.58 (m, 3H; 12-H,13-H, 14-H), 7.62 (dd, 3J = 7.0 Hz, 1H; 5-H), 7.81 (dd, 3J = 7.0 Hz, 1H; 6-H), 8.29 (d, 3J = 8.0 Hz, 2H; 11-H, 15-H) ppm; 13
C
NMR (100 MHz, CDCl3): δ = 110, 120.1, 124, 125, 127, 127.6, 129, 131, 142, 150, 163 ppm ; HRMS (EI, M+) calculated for C13H9NO (195.06841);
found (195.06820).
References and notes
1. a) Phillips, A. M. F.; Pombeiro, A. J. L. Org. Biomol. Chem. 2017, 15, 2307-2340. b) Volla, C. M. R.; Atodiresei, T.; Rueping, M. Chem. Rev.
2014, 114, 2390-2431. c) Dalpozzo, R.; Bartoli, G.; Bencivenni G. Chem. Soc. Rev. 2012, 41, 7247-7290.
2. a) Zhou, Q. L. Angew. Chem., Int. Ed. 2016, 55, 5352-5353. b) Shaikh, I. R. J. Catal. 2014, doi.org/10.1155/2014/402860.
4. a) Xuan, J.; Studer, A. Chem. Soc. Rev. 2017, 46, 4329-4346. b) Amaya, T.; Suzukia, R.; Hirao, T. Chem. Commun. 2016, 52, 7790-7793. c)
Kumari, S.; Kishore, D.; Paliwal, S.; Chauhan, R.; Dwivedi, J.; Mishra, A. Mol. Divers. 2016, 20, 185-232. d) Zhang, Z.; Gao, Y.; Liu, Y.; Li,
J.; Xie, H.; Li, H.; Wang, W. Org. Lett. 2015, 17, 5492-5495. e) Korenaga, T.; Nitatori, K.; Muraoka, H.; Ogawa, S.; Shimada, K. Org. Lett,
2015, 17, 5500-5503 f) Mohlmann, L.; Ludwig, S.; Blechert, S. Beilstein J. Org. Chem. 2013, 9, 602-607.
5. a) Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505-3521. b) Vitaku, E.; Smith, D. T.; Njardar-son, J. T. J. Med. Chem. 2014, 57, 10257-
10274.
6. Don, M.-J.; Shen, C.-C.; Lin Y.-L.; Syu, W.-J.; Ding, Y-H.; Sun, C.-M. J. Nat. Prod. 2005, 68, 1066-1070.
7. For examples, see: a) McKee, M. L.; Kerwin, S. M. Bioorg. Med. Chem. 2008, 16, 1775-1783. b) Kumar, D.; Jacob, M. R.; Reynolds, M. B.;
Kerwin, S. M. Bioorg. Med. Chem. 2002, 10, 3997-4004. c) Koc, J. I.; Klimessova, V.; Waisser, K.; Kaustova, J.; Dahse, H.-M.; Mollmann,
U. Bioorg. Med. Chem. Lett. 2002, 12, 3275-3278.
8. Taki, M.; Wolford, J. L.; O'Halloran, T. V. J. Am. Chem. Soc.2003, 126, 712-713.
9. Viirre, R. D.; Evindar, G.; Batey, R. A. J. Org. Chem. 2008, 73, 3452-3459.
10. a) Rajasekhar, S.; Maiti, B.; Chanda, K. Synlett 2017, 28, 521-541. b) Satyendra, R. V.; Vishnumurthy, K. A.; Vagdevi, H. M.; Rajesh, K. P.;
Manjunatha, H.; Shruthi, A. Eur. J. Med. Chem, 2011, 46, 3078-3084.
11. a) Weekes, A. A.; Westwell, A. D. Curr. Med. Chem. 2009, 16, 2430-2440. b) Kini, S.; Swain, S. P.; Gandhi, A. M.; Indian J. Pharm. Sci. 2007,
69, 46-50.
12. Chacko, S.; Boshoff, H. I. M.; Singh, V.;, Ferraris, D. M.; Gollapalli, D. R.; Zhang, M.; Lawson, A. P.; Pepi, M. J.; Joachimiak, A.; Rizzi, M.;
Mizrahi, V.; Cuny, G. D.; Hedstrom, L. J. Med. Chem. 2018, 61, 4739-4756.
13. Tipparaju, S. K.; Joyasawal, S.; Pieroni, M.; Kaiser, M.; Brun, R.; Kozikowski, A. P. J. Med. Chem. 2008, 51, 7344-7347.
14. Yoshida, S.; Shiokawa, S.; Kawano, K.-I.; Ito, T.; Murakami, H.; Suzuki, H.; Sato, Y. J. Med. Chem. 2005, 48, 7075-7079.
15. a) Sharma, P. C.; Sinhmar, A.; Sharma, A.; Rajak, H.; Pathak, D. P. J. Enzyme Inhib. Med. Chem. 2013, 28, 240-266. b) Aiello, S.; Wells, G.;
Stone, E. L.; Kadri, H.; Bazzi, R.; Bell, D. R.; Stevens, M. F. G.; Matthews, C. S.; Bradshaw, T. D.; Westwell, A. D. J. Med. Chem. 2008, 51,
5135-5139.
16. a) Vinsova, J.; Horak, V.; Buchta, V.; Kaustova, J. Molecules 2005, 10, 783-793. b) Ali, A.; Taylor, G. E.; Graham, D. W. PCT Int. Appl. 2001,
WO 20011028561.
17. a) Padalkar, V. S.; Borse, B. N.; Gupta, V. D.; Phatangare, K. R.; Patil, V. S.; Umape, P. G.; Sekar, N. Arabian J. Chem. 2016, 9, 1125-1130. b)
Singh, M. K.; Tilak, R.; Nath, G.; Awasthi, S. K.; Agarwal, A. Eur. J. Med. Chem. 2013, 63, 635-644. c) Dixit, S. K.; Mishra, N.; Sharma, M.;
Singh, S.; Agarwal, A.; Awasthi, S. K.; Bhasin, V. K. Eur. J. Med. Chem. 2012, 51, 52-59.
18. Mickevicius, V.; Voskiene, A.; Jonuskiene, I.; Kolosej, R.; Siugzdaite, J.; Venskutonis, P. R.; Kazernaviciute, R.; Braziene, Z.; Jakienė E.
Molecules 2013, 18, 15000-15018.
19. Soderlind, K.-J.; Gorodetsky, B.; Singh, A. K.; Bachur, N.; Miller, G. G.; Loun J. W. Anti-Cancer Drug Des. 1999, 14, 19-36.
20. Gravalt, G. L.; Baguley, B. L.; Wilson, W. R.; Denny, W. A. J. Med. Chem. 1994, 37, 4338-4345.
21. Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893-930.
22. Kim, J. S.; Gatto, B.; Yu, C.; Liu, A.; Liu, L. F.; LaVoie, E. J. J. Med. Chem. 1996, 39, 992-998.
23. Roth, T.; Morningstar, M. L.; Boyer, P. L.; Hughes, S. H.; Buckheit, R. W.; Michejda, Jr. C. J. J. Med. Chem. 1997, 40, 4199-4207.
24. a) Sun, Y.; Jiang, H.; Wu, W.; Zeng, W.; Wu, X. Org. Lett. 2013, 15, 1598-1601. b) Yu, H.; Zhang, M.; Li, Y. J. Org. Chem. 2013, 78, 8898-
8903. c) Seijas, J. A.; Vazquez-Tato, M. P.; Carballido-Reboredo, M. R.; Crecente-Campo, J.; Romar-Lopez, L. Synlett 2007, 2, 313-317. d)
Pottorf, R. S.; Chadha, N. K.; Katkevics, M.; Ozola, V.; Suna, E.; Ghane, H.; Regberg, T.; Player, M. R. Tetrahedron Lett. 2003, 44, 175-178.
25. a) Hati, S.; Dutta, P. K.; Dutta, S.; Munshi, P.; Sen S. Org. Lett. 2016, 18, 3090-3093. b) Swami, M. B.; Patil, S. G.; Mathapati, S. R.; Ghuge, H.
G.; Jadhav, A. H. Pharma Chem. 2015, 7, 533-535. c) Sharma, H.; Singh, N.; Jang, D. Green Chem. 2014, 16, 4922-4930. d) Gorepatil, P. B.;
Mane, Y. D.; Ingle, V. S. Synlett 2013, 24, 2241-2244. e) Bastug, G.; Eviolitte, C.; Marko, I. E. Org. Lett. 2012, 14, 3502-3505. f) Maddila, S.;