L. C. Dias et al. / Tetrahedron Letters 46 (2005) 4427–4431
4431
2149; (c) Smith, P. M.; Thomas, E. J. J. Chem. Soc.,
Perkin Trans. 1 1998, 3541.
Supplementary data
9. Alternatively, this same aldehyde can be prepared in two
steps from ester 7 by a sequence involving LiAlH4 reduc-
tion followed by Swern oxidation, in 87% overall yield.
10. Dias, L. C.; Campano, P. L. J. Braz. Chem. Soc. 1998, 9,
97.
Supplementary data associated with this article can be
11. (a) Evans, D. A.; Johnson, J. S. J. Org. Chem. 1997, 62,
786; (b) Evans, D. A.; Scheidt, K. A.; Downey, C. W. Org.
Lett. 2001, 3, 3009; (c) Claremon, D. A.; Dolle, R. E., III.
J. Am. Chem. Soc. 1981, 103, 6967; (d) Koch, S. S. C.;
Chamberlin, A. R. J. Org. Chem. 1993, 58, 2725.
12. Horita, K.; Yoshioka, T.; Tanaka, T.; Oikawa, Y.;
Yonemitsu, O. Tetrahedron 1986, 42, 3021.
13. For alcohol 15a, oxidation must be done immediately after
deprotection in order to avoid formation of the product
from intramolecular Michael addition reaction.
References and notes
1. (a) Belshe, R. B. In Textbook of Human Virology, 2nd ed.;
Mosby-Year Book: St. Louis, 1991, Chapter 36, pp 862–
888; (b) Lieberman, P. M.; Berk, A. J. J. Virol. 1990, 64,
2560; (c) Chang, Y.-N.; Dong, D. L.-Y.; Hayward, G. S.;
Hayward, S. D. J. Virol. 1990, 64, 3358; (d) Dimmock, N.
J.; Primrose, S. B. In Introduction to Modern Virology, 4th
ed.; Blackwell Science: Oxford, 1994, Chapter 17, pp 266–
267.
2. Miao, S.; Anstee, M. R.; Baichwal, V.; Park, A. Tetrahe-
dron Lett. 1995, 36, 5699.
Me
3. Pyrroloketoindanes are named according to their pyrrole
part. This family of natural products also includes indano-
mycin (X-14547A), 16-deethylindanomycin (A83094A),
homoindanomycin and cafamycin.
O
N
O
N
OH
O
O
O
15a
O
O
Me
50:50 mixture
4. The numbering of 1 as well as of each intermediate follows
that suggested in Ref. 2.
14. (a) Takai, K.; Nitta, K.; Utimoto, K. J. Am. Chem. Soc.
1986, 108, 7408; (b) Paterson, I.; Lombart, H.; Allerton,
C. M. N. Org. Lett. 1999, 1, 19.
15. (a) Araki, Y.; Konoike, T. J. Org. Chem. 1997, 62, 5299;
(b) Wender, P. A.; Sieburth, S. M.; Petraotis, J. J.; Singh,
S. K. Tetrahedron 1981, 37, 3967; (c) Ishihara, J.;
Sugimoto, T.; Murai, A. Tetrahedron 1997, 53, 16029;
(d) Chemler, S. R.; Iserloh, U.; Danishefsky, S. J. Org.
Lett. 2001, 3, 2949; (e) Sugiyama, H.; Yokokawa, F. Org.
Lett. 2000, 2, 2149.
16. (a) Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508;
(b) Farina, V. Pure Appl. Chem. 1996, 68, 73; (c) Duncton,
A. J.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1999,
1235; (d) Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987,
109, 813.
17. (a) Dias, L. C. J. Braz. Chem. Soc. 1997, 8, 289; (b)
Brocksom, T. J.; Nakamura, J.; Ferreira, M. L.; Brock-
som, U. J. Braz. Chem. Soc. 2001, 12, 597.
5. Williams, R. M.; Stocking, E. M. Angew. Chem., Int. Ed.
2003, 42, 3078.
6. Dias, L. C.; Jardim, L. S. A.; Ferreira, A. A.; Soarez, H.
U. J. Braz. Chem. Soc. 2001, 12, 463.
7. For similar intramolecular Diels–Alder approaches, see: (a)
Burke, S. D.; Piscopio, A. D.; Kort, M. E.; Matulenko, M.
A.; Parker, M. H.; Armistead, D. M.; Shankaran, K. J.
Org. Chem. 1994, 59, 332; (b) Edwards, M. P.; Ley, S. V.;
Lister, S. G.; Palmer, B. D.; Williams, D. J. J. Org. Chem.
1984, 59, 3503; (c) Roush, W. R.; Myers, A. G. J. Org.
Chem. 1981, 46, 1509; (d) Roush, W. R.; Peseckis, S. M.
Tetrahedron Lett. 1982, 23, 4879; (e) Edwards, M. P.; Ley,
S. V.; Lister, S. G.; Palmer, B. D.; Williams, D. J.
Tetrahedron Lett. 1981, 22, 361; (f) Burke, S. D.; Armi-
stead, D. M.; Shankaran, K. Tetrahedron Lett. 1986, 27,
6295; (g) Nicolaou, K. C.; Magolda, R. L. J. Org. Chem.
1981, 46, 1506; (h) Edwards, M. P.; Ley, S. V.; Lister, S. G.;
Palmer, B. D. J. Chem. Soc., Chem. Commun. 1983, 630.
8. (a) Nicolaou, K. C.; Patron, A. P.; Ajito, K.; Richter, P.
K.; Khatuya, H.; Bertinato, P.; Miller, R. A.; Tomaszew-
ski, M. J. Chem. Eur. J. 1996, 2, 847; (b) Kawabata, T.;
Kimura, Y.; Ito, T.; Terashima, S. Tetrahedron 1988, 44,
18. New compounds and the additional isolated intermediates
gave satisfactory 1H and 13C NMR, IR, HRMS and
analytical data. Yields refer to chromatographically and
spectroscopically homogeneous materials.