Novel Syn th esis of Ca r ba p en a m by In tr a m olecu la r Atta ck of
La cta m Nitr ogen tow a r d η1-Allen yl a n d η3-P r op a r gylp a lla d iu m
Com p lex
Yuji Kozawa and Miwako Mori*
Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, J apan
mori@pharm.hokudai.ac.jp
Received April 10, 2003
When a THF solution of â-lactam having propargyl phosphate was warmed in the presence of 5
mol % of Pd2(dba)3‚CHCl3, 20 mol % of a bidentate ligand, and sodium acetate (1.5 equiv) at 40 °C
for 22 h, carbapenam was produced in high yield. In this reaction, the lactam nitrogen attacked
the central carbon of a η3-propargylpalladium complex, which was formed from propargyl phosphate
and Pd(0).
SCHEME 1. P a lla d iu m -Ca ta lyzed C-N
Bon d -F or m in g Rea ction betw een Ar yl Ha lid es a n d
Am in es
In tr od u ction
Many works have been carried out to develop carba-
penem antibiotics having chemical and biological proper-
ties for clinical use since the discovery by Merck’s group
of thienamycin, the first naturally occurring carbapenem
antibiotic.1 The establishment of a new method for
forming a carbapenem skeleton is very important to
develop new types of carbapenem antibiotics that have
strong antibiotic activity.2 Generally, a five-membered
ring is formed from four-membered 2-azetidinone having
proper residual groups at the 1- and/or 4-position for the
construction of a carbapenam skeleton. However, it is not
so easy to construct a carbapenam or carbapenem skel-
eton because carbapenam or carbapenem having a 4-5
fused ring system has a highly strained structure com-
pared with the structures of other â-lactam antibiotics
such as penam and penem, and there have been few
reports on a simple method for constructing a carba-
penam skeleton.
Organometallic reagents have been extensively studied
over the past few decades by many organic chemists, and
they now play very important roles in synthetic organic
chemistry.
There are several notable reports on the construction
of carbapenam skeletons with organometallic reagents.3
As originally reported by Merck’s group, intramolecular
reaction of a rhodium-carbene complex with the N-H
bond of â-lactam has often been used for the synthesis
of a wide range of carbapenem derivatives.4 Trost re-
ported the synthesis of carbapenam derivatives using
palladium-catalyzed cyclization.5 Genet reported the
synthesis of carbapenem derivatives by intramolecular
nucleophilic attack of active methylene to a π-allylpal-
ladium complex, and he recently also reported the
synthesis of carbapenam derivatives using a metathesis
reaction.6 Recently, we have investigated potential meth-
ods for synthesizing a carbapenam and carbapenem
skeleton by reductive elimination from a six-membered
metalacycle.7
Palladium-catalyzed C-N bond-forming reactions be-
tween aryl halides and amines have been extensively
investigated over the past few years by Buchwald,
Hartwig, and others (Scheme 1).8 This reaction has been
(4) (a) Ratcliffe, R. W.; Salzmann, T. N.; Christensen, B. G.
Tetrahedron Lett. 1980, 21, 31. (b) Salzmann, T. N.; Ratcliffe, R. W.;
Christensen, B. G.; Bouffard, F. A. J . Am. Chem. Soc. 1980, 102, 6161.
(c) Williams, M. A.; Hsiao, C.-N.; Miller, M. J . J . Org. Chem. 1991, 56,
2688. (d) Kume, M.; Kubota, T.; Iso, Y. Tetrahedron Lett. 1995, 36,
8043.
(5) Trost, B. M.; Chen, S.-F. J . Am. Chem. Soc. 1986, 108, 6053.
(6) (a) Roland, S.; Durand, J . O.; Savignac, M.; Geneˆt, J . P.
Tetrahedron Lett. 1995, 36, 3007. (b) Galland, J .-C.; Roland, S.;
Malpart, J .; Savignac, M.; Genet, J .-P. Eur. J . Org. Chem. 1999, 621.
(c) Duboc, R.; He´naut, C.; Savignac, M.; Genet, J .-P.; Bhatnagar, N.
Tetrahedron Lett. 2001, 42, 2461.
(7) (a) Mori, M.; Kozawa, Y.; Nishida, M.; Kanamaru, M.; Onozuka,
K.; Takimoto, M. Org. Lett. 2000, 2, 3245. (b) Preliminary report of
this article: Kozawa, Y.; Mori, M. Tetrahedron Lett. 2001, 42, 4869.
(c) Kozawa, Y.; Mori, M. Tetrahedron Lett. 2002, 43, 111.
(8) (a) Hartwig, J . F. Angew. Chem., Int. Ed. 1998, 37, 2046. (b)
Wolfe, J . P.; Wagaw, S.; Marcoux, J .-F.; Buchwald, S. L. Acc. Chem.
Res. 1998, 31, 805. (c) Ali, M. H.; Buchwald, S. L. J . Org. Chem. 2001,
66, 2560. (d) Stauffer, S. R.; Lee, S.; Stambuli, J . P.; Hauck, S. I.;
Hartwig, J . F. Org. Lett. 2000, 2, 1423. (e) Roy, A. H.; Hartwig, J . F.
J . Am. Chem. Soc. 2001, 123, 1232. (f) Nishiyama, M.; Yamamoto, T.;
Koie, Y. Tetrahedron Lett. 1998, 39, 617. (g) Yamamoto, T.; Nishiyama,
M.; Koie, Y. Tetrahedron Lett. 1998, 39, 2367. (h) Wolfe, J . P.;
Buchwald, S. L. J . Org. Chem. 1997, 62, 1264. (i) Huang, J .; Grasa,
G.; Nolan, S. P. Org. Lett. 1999, 1, 1307. (j) Wolfe, J . P.; Rennels, R.
A.; Buchwald, S. L. Tetrahedron 1996, 52, 7525. (k) Yang, B. H.;
Buchwald, S. L. Org. Lett. 1999, 1, 35. (l) Yin, J .; Buchwald, S. L. Org.
Lett. 2000, 2, 1101. (m) Shakespeare, W. C. Tetrahedron Lett. 1999,
40, 2035.
(1) (a) Kahan, J . S.; Kahan, F. M.; Goegelman, R.; Currie, S. A.;
J ackson, M.; Stapley, E. O.; Miller, T. W.; Miller, A. K.; Hendlin, D.;
Mochales, S.; Hernandez, S.; Woodruff, H. B.; Birnbaum, J . J . Antibiot.
1979, 32, 1. (b) Albers-Scho¨nberg, G.; Arison, B. H.; Hensens, O. D.;
Hirshfield, J .; Hoogsteen, K.; Kaczka, E. A.; Rhodes, R. E.; Kahan, J .
S.; Kahan, F. M.; Ratcliffe, R. W.; Walton, E.; Ruswinkle, L. J .; Morin,
R. B.; Christensen, B. G. J . Am. Chem. Soc. 1978, 100, 6491. (c)
Sunagawa, M.; Sasaki, A. Heterocycles 2001, 54, 497.
(2) Berks, A. H. Tetrahedron 1996, 52, 331.
(3) Barrett, A. G. M.; Sturgess, M. A. Tetrahedron 1988, 44, 5615.
10.1021/jo030123c CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/19/2003
8068
J . Org. Chem. 2003, 68, 8068-8074