10.1002/chem.201904147
Chemistry - A European Journal
COMMUNICATION
indicate that the majority of endogenous phospho-STAT5 in K562
cells is STAT5b.[4a-c]
demonstration that selective targeting of STAT5a over STAT5b is
feasible both in vitro and in cells.
Acknowledgements
This work was generously supported by the Deutsche
Forschungsgemeinschaft (BE 4572/4-1 and INST 268/281-1
FUGG), and the European Union and the Free State of Saxony,
European Regional Development Fund. We extend our thanks to
Nagarajan Elumalai, Julian Gräb and Barbara Klüver for
experimental support, and to Andreas Rost for support with virtual
screening-related computations.
Keywords: biological activity • inhibitors • protein-protein
interactions • SH2 domains • transcription factors
[1]
[2]
a) J. A. Wells, C. L. McClendon, Nature 2007, 450, 1001-1009; b) L. G.
Milroy, T. N. Grossmann, S. Hennig, L. Brunsveld, C. Ottmann, Chem.
Rev. 2014, 114, 4695-4748.
a) P. M. Cromm, J. Spiegel, T. N. Grossmann, ACS Chem. Biol. 2015,
10, 1362-1375; b) C. G. Cummings, A. D. Hamilton, Curr. Opin. Chem.
Biol. 2010, 14, 341-346; c) J. Zaminer, C. Brockmann, P. Huy, R. Opitz,
C. Reuter, M. Beyermann, C. Freund, M. Muller, H. Oschkinat, R.
Kuhne, H. G. Schmalz, Angew. Chem. Int. Ed. 2010, 49, 7111-7115.
M. Gräber, W. Janczyk, B. Sperl, N. Elumalai, C. Kozany, F. Hausch, T.
A. Holak, T. Berg, ACS Chem. Biol. 2011, 6, 1008-1014.
Figure 5. A) Synthesis of prodrug 27. B) Tyrosine phosphorylation of
STAT5a/b by Bcr-Abl is inhibited by a ligand of the SH2 domain. C) Effect
of 27 on phosphorylation of STAT5a in STAT5a-GFP-transfected K562
cells, and D) on phosphorylation of STAT5b in STAT5b-GFP-transfected
K562 cells. E, F) Quantitation of the data shown in C) (n=4), and D) (n=3),
respectively. Phospho-STAT5a/b-GFP levels are normalized against total
STAT5a/b-GFP. All error bars represent standard deviations (s.d.).
[3]
[4]
a) N. Elumalai, A. Berg, K. Natarajan, A. Scharow, T. Berg, Angew.
Chem. Int. Ed. 2015, 54, 4758-4763; b) N. Elumalai, A. Berg, S.
Rubner, T. Berg, ACS Chem. Biol. 2015, 10, 2884-2890; c) N. Elumalai,
A. Berg, S. Rubner, L. Blechschmidt, C. Song, K. Natarajan, J. Matysik,
T. Berg, Sci. Rep. 2017, 7, 819; d) N. Elumalai, K. Natarajan, T. Berg,
Bioorg. Med. Chem. 2017, 25, 3871-3882.
In conclusion, we present docking-based screening of in
silico O-phosphorylated natural product fragments as a novel
method for identifying lead structures for the development of
[5]
[6]
L. Hennighausen, G. W. Robinson, Genes Dev. 2008, 22, 711-721.
G. Miklossy, T. S. Hilliard, J. Turkson, Nat. Rev. Drug Discov. 2013, 12,
611-629.
inhibitors
of
phosphorylation-dependent
protein-protein
interaction domains, which are of crucial importance to cellular
signaling. While virtual screening of phosphonates against a
phosphorylation-dependent protein-protein interaction domain
has been reported,[30] our work represents the first case in which
the virtual screening library itself is generated by in silico O-
phosphorylation. Application of this concept to the STAT3 SH2
domain resulted in the moderate STAT3 inhibitor 1, which was
then discovered to preferentially target STAT5. Analysis of
structure-activity relationships led to the development of 20, the
first inhibitor of STAT5a which displays high selectivity over
STAT5b and other STAT family members. We dubbed 20 Stafia-
1 (STAT five a inhibitor 1). The use of wild-type and point mutant
STAT5 proteins demonstrated that both the SH2 domain and
Trp566 in the adjacent linker domain contribute to selective
recognition of Stafia-1 by STAT5a. The cell-permeable prodrug
27, based on the Stafia-1-derived monofluoromethylene
phosphonate 26, inhibited tyrosine phosphorylation of STAT5a
with selectivity over STAT5b in cultured human leukemia cells,
and represents a valuable tool to define the non-redundant
molecular functions of the two highly homologous transcription
factors in tumor cells.[7] Selective inhibition of STAT5a by 27,
especially in direct comparison with selective inhibition of STAT5b
by catechol bisphosphate-based prodrugs such as Pomstafib-
2,[4c] would allow for dissection of the target genes of STAT5a and
STAT5b with high temporal control.[7] Our data provide the first
[7]
[8]
B. Basham, M. Sathe, J. Grein, T. McClanahan, A. D'Andrea, E. Lees,
A. Rascle, Nucleic Acids Res. 2008, 36, 3802-3818.
K. M. Lee, K. H. Park, J. S. Hwang, M. Lee, D. S. Yoon, H. A. Ryu, H.
S. Jung, K. W. Park, J. Kim, S. W. Park, S. H. Kim, Y. M. Chun, W. J.
Choi, J. W. Lee, Cell Death Dis 2018, 9, 1136.
[9]
a) J. Müller, B. Sperl, W. Reindl, A. Kiessling, T. Berg, ChemBioChem
2008, 9, 723-727; b) A. A. Cumaraswamy, A. M. Lewis, M. Geletu, A.
Todic, D. B. Diaz, X. R. Cheng, C. E. Brown, R. C. Laister, D. Muench,
K. Kerman, H. L. Grimes, M. D. Minden, P. T. Gunning, ACS Med.
Chem. Lett. 2014, 5, 1202-1206; c) Z. Liao, L. Gu, J. Vergalli, S. A.
Mariani, M. De Dominici, R. K. Lokareddy, A. Dagvadorj, P.
Purushottamachar, P. A. McCue, E. Trabulsi, C. D. Lallas, S. Gupta, E.
Ellsworth, S. Blackmon, A. Ertel, P. Fortina, B. Leiby, G. Xia, H. Rui, D.
T. Hoang, L. G. Gomella, G. Cingolani, V. Njar, N. Pattabiraman, B.
Calabretta, M. T. Nevalainen, Mol. Cancer Ther. 2015, 14, 1777-1793;
d) A. Berg, T. Berg, Bioorg. Med. Chem. Lett. 2017, 27, 3349-3352; e)
E. L. Wong, E. Nawrotzky, C. Arkona, B. G. Kim, S. Beligny, X. Wang,
S. Wagner, M. Lisurek, D. Carstanjen, J. Rademann, Nat. Commun.
2019, 10, 66.
[10] M. A. Koch, A. Schuffenhauer, M. Scheck, S. Wetzel, M. Casaulta, A.
Odermatt, P. Ertl, H. Waldmann, Proc. Natl. Acad. Sci. U. S. A. 2005,
102, 17272-17277.
[11] J. J. Irwin, T. Sterling, M. M. Mysinger, E. S. Bolstad, R. G. Coleman, J.
Chem. Inf. Model. 2012, 52, 1757-1768.
[12] D. Weininger, J. Chem. Inf. Comput. Sci. 1988, 28, 31-36.
[13] S. Becker, B. Groner, C. W. Müller, Nature 1998, 394, 145-151.
[14] O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455-461.
This article is protected by copyright. All rights reserved.