228
Gueiffier and co-workers
228.25 g.mole–1, crystallized in the monoclinic system, space group P21/a
(Z = 4). The unit cell parameters were obtained by a least-squares fit of the
setting angles of 25 reflections with θ between 15 and 35° and are as follows :
a = 7.155(3), b = 12.106(3), c = 13.022(4), and β = 101.37(3) with a cell
volume of 1105.8(6) Å3.The calculated density is equal to 1.431 g.cm–3. The
linear absorption coefficient was µ = 0.7585 mm–1 for the CuKα radiation
and an ω–2θ scan.
The diffracted intensities were collected with a CAD-4 Enraf-Nonius
diffractometer equipped with a graphite monochromator for θmax = 60: 0 ≤
h ≤ 7, 0 ≤ k ≤13, –14 ≤ l ≤ 14. Three standard reflections were used to monitor
the data and to detect any decrease of intensity (–4 3 1, –1 –4 5, 1 4 5). There
were 1598 independent reflections of which 797 were considered as observed
(I>2σ (I) and Rint = 0.0206).
The crystal structure was solved and refined using the SHELX97 program
[26]. Scattering factors were taken from the International Tables for Crystal-
lography [27]. The hydrogen atoms were introduced in their theoretical
positions and allowed to ride with the atoms to which they are attached; the
refinement was then resumed. The final reliability factors were: R = 0.059,
wR = 0.129 and the goodness of fit was equal to 0.967. The weight was equal
to: w = 1/[σ2(Fo2) + (0.0787P)2 + 0.1435P] where P = (Fo2 +2Fc2)/3. The
minimum and maximum residual density were equal –0.231 and 0.239 e.Å–3
respectively.
P. Harvey, D. Hupe, L. Sharmeen, D. Mack, J. Scholten, J. Saunders,
T. McQuade, Drug Design Discov., 1997, 15, 49–61 ; [d] J. V. N. Vara
Prasad, J. A. Loo, F. E. Boyer, M. A. Stier, R. D. Gogliotti, W. J. Turner,
P. J. Harvey, M. R. Kramer, D. P. Mack, J. D. Scholten, S. J. Gracheck,
J. M. Domagala, Bioorg. Med. Chem. 1998, 6, 1707–1730.
[7] W. G. Rice, D. Baker, C. A. Schaeffer, L. Graham, M. Bu, S. Terpening,
D. Clanton, R. Schultz, J. P. Bader, R. W. Buckheit Jr., L. Field, P. K.
Singh, J. A. Turpin, Antimicrob. Agents Chemother. 1997, 41, 419–426.
[8] [a] M. Vandevelde, M. Witvrouw, J. C. Schmit, S. Sprecher, E. de
Clercq, J.P. Tassignon, AIDS Res. Hum. Retro. Vir. 1996, 12, 567–568
; [b] W. G. Rice, J. A. Turpin, M. J. Huang, D. Clanton, R. W. Buckhert
Jr., D. G. Covell, A. Wallqvist, N. Mc Donnel, R. N. de Guzman, M.
F. Summers, L. Zalkow, J. P. Bader, R. D. Haugwitz, E. A. Sausville,
Nat. Med. 1997, 3, 341–345.
[9] J. A. Turpin, Y. Song, J. K. Inman, M. Huang, A. Wallqvist, A.
Maynard, D. G. Covell, W. G. Rice, E. Appella, J. Med. Chem. 1999,
42, 67–86.
[10] S. Druillennec, H. Meudal, B. P. Roques, M. C. Fournié-Zaluski,
Bioorg. Med. Chem. Lett. 1999, 9, 627–632.
[11] A. Gueiffier, M. Lhassani, A. Elhakmaoui, R. Snoeck, G. Andrei, O.
Chavignon, J. C. Teulade, A. Kerbal, E. M. Essassi, J. C. Debouzy, M.
Witvrouw, Y. Blache, J. Balzarini, E. de Clercq, J. P. Chapat, J. Med.
Chem. 1996, 39, 2856–2859; A. Gueiffier, S. Mavel, M. Lhassani, A.
Elhakmaoui, R. Snoeck, G. Andrei, O. Chavignon, J. C. Teulade, M.
Witvrouw, J. Balzarini, E. de Clercq, J. P. Chapat, J. Med. Chem. 1998,
41, 5108–5112.
Inhibition of HIV-1-Induced Cytopathicity in MT-4 and CEM Cells
The methodology of the anti-HIV assays has been described previously.
Briefly, human MT-4 (ca. 4 × 105 cell mL–1) cells were infected with 100
CCID50 of HIV-1 (IIIB)/mL or HIV-2(ROD)/mL and seeded in 200-µl wells
of a microtiter plate, containing appropriate concentrations of the test com-
pounds. After 5 days of incubation at 37°C, the number of viable (MT-4)
cells was determined by an automated MTT dye staining of living cells.
[12] J. C. Teulade, R. Escale, H. Viols, J. P. Chapat, G. Grassy, A. Carpy,
J. M. Leger, J. Chem. Soc. Perkin Trans. I 1983, 2663–2667.
[13] A. M. Roe, J. Chem. Soc. 1963, 2195–2200.
[14] J. C. Teulade, A. Gueiffier, H. Viols, J. P. Chapat, G. Grassy, B. Perly,
References
G. Dauphin, J. Chem. Soc. Perkin Trans. I 1989, 1895–1899.
[1] J. Cohen, Science 1997, 277, 32–33; J. K. Wong, M. Hezareh, H. F.
Gunthard, D. V. Havlir, C. C. Ignacio, C. A. Spina, D. D. Richman,
Science 1997, 278, 1291–1295; D. Finzi, M. Hermankova, T. Pierson,
L. Canuth, C. Buck, R.-E. Chaisson, T. C. Quinn, K. Chadwick, J.
Margolick, R. Brookmayer, J. Gallant, M. Markowitch, D. D. Ho, D.
D. Richman, R. F. Silicano, Science 1997, 278, 1295–1300.
[15] A. L. Spek, Platon99, Program for Drawing Crystal and Molecular
Diagrams, (1999), Univ. Of Ultrecht, Netherlands.
[16] N. Campbell, E.B. MacCall, J. Chem. Soc. 1951, 2411–2416.
[17] F. Mattu, E. Marangiu, Ann. Chim. (Rome) 1964, 54, 496–509.
[18] R. Rydzkowski, D. Blondeau, H. Sliwa, Tetrahedron Lett. 1985, 26,
[2] J. L. Darlix, M. Lapadat-Tapolsky, H. de Rocquigny, B. P. Roques, J.
Mol. Biol. 1995, 254, 523–537.
2571–2574.
[19] R. Menasse, G. Klein, H. Erlenmeyer, Helv. Chim. Acta 1955, 38,
[3] T. L. South, P. R. Blake, R. C. Sowder, L. O. Arthur, L. E. Henderson,
M. F. Summer, Biochemistry 1990, 29, 7786–7789; T. L. South, M. F.
Summers, Adv. Inorg. Biochem. Ser. 1990, 8, 199–248.
1289–1291.
[20] A. Willemart, Ann. Chim. (Paris) 1929, 12, 345–422.
[4] A. Rein, D. E. Ott, J. Mirro, L. O. Arthur, W. G. Rice, L. E. Henderson,
[21] Ng. Ph. Buu-Hoi, Ng. Hoan, R. Royer, Bull. Soc. Chim. Fr. 1950,
J. Virol. 1996, 70, 4966–4972.
489–493.
[5] [a] W. G. Rice, C. A. Schaeffer, B. Harten, F. Villinger, T. L. South,
M. F. Summers, L. E. Henderson, J. W. Bess Jr, L. O. Arthur, J. S.
McDougal, S. L. Orloff, J. Mendeleyev, E. Kun, Nature 1993, 361,
473–475 ; [b] W. G. Rice, C. A. Schaeffer, L. Graham, M. Bu, J. S.
McDougal, S.L. Orloff, F. Villinger, M. Young, S. Oroszlan, M. R.
Fesen, Y. Pommier, J. Mendeleyev, E. Kun, Proc. Natl. Acad. Sci. USA
1993, 90, 9721–9724.
[22] Ng. Ph. Buu-Hoi, Ng. Hoan, Rec. Trav. Chim. Pays-Bas 1949, 68,
441–472.
[23] P. R. Loiseau, M. Payard, G. Grassy, Z. Dornelles Pinto, C. Advenier,
J. P. Gnassounou, Y. Adam, Eur. J. Med. Chem. 1987, 22, 457–462.
[24] C. Párkányi, A. O. Abdelhamid, J. C. S. Cheng, A. S. Shawali, J.
Heterocyclic Chem. 1984, 21, 1029–1032.
[6] [a] W. G. Rice, J. G. Supko, L. Malspeis, R. W. Buchheit Jr., D.J.
Clanton, M. Bu, L. Graham, C. A. Schaeffer, J. A. Turpin, J. Domagala,
R. D. Gogliotti, J. P. Bader, S. M. Halliday, L. Coren, R. C. Sowder II,
L. O. Arthur, L. E. Henderson, Science 1995, 270, 1194–1197 ; [b] J.
M. Domagala, J. P. Bader, R. D. Gogliotti, J.P. Sanchez, M. A. Stier,
Y. Song, J. V. N. Vara Prasad, P. J. Tummino, J. Scholten, P. Harvey,
T. Holler, S. Gracheck, D. Hupe, W. G. Rice, R. Schultz, Bioorg. Med.
Chem. 1997, 5, 569–579 ; [c] J. M. Domagala, R. D. Gogliotti, J.
Sanchez, M. A. Stier, K. Musa, Y. Song, J. Loo, M. Reily, P. Tummino,
[25] R. Rydzkowski, D. Blondeau, H. Sliwa, J. Chem. Res. (M) 1986, 11,
3368–3390.
[26] G. M. Sheldrick, Program for the determination and the refinement of
crystal structures, Univ. Gottingen, Germany 1997.
[27] International Tables for X-Ray Crystallography, Kynoch Press, Bir-
mingham, 1974, Vol. IV.
Received: May 7, 2001 [FP572]
Arch. Pharm. Pharm. Med. Chem. 334, 224–228 (2001)