Page 5 of 7
Journal of the American Chemical Society
5, 436–442. (f) Zhang, Z.-J.; Zhang, H.-Y.; Wang, H.; Liu, Y.
act further to form kinetically stable, multiply threaded,
1
2
3
4
5
6
7
8
Angew. Chem., Int. Ed. 2011, 50, 10834–10838.
[3]- and [4]rotaxanes. We anticipate that this approach
will be useful for the synthesis of rotaxanes featuring even
more chains threaded though a single ring, by judicious
choice of template, coupling reaction, macrocycle size
and conformation, and stopper size and shape.
(3) (a) Cheng, H. M.; Leigh, D. A.; Maffei, F.; McGonigal, P. R.;
Slawin, A. M. Z.; Wu, J. J. Am. Chem. Soc. 2011, 133, 12298–12303.
(b) Yamashita, Y.; Mutoh, Y.; Yamasaki, R.; Kasama, T.; Saito, S.
Chem. Eur. J. 2015, 21, 2139–2145. (c) Hayashi, R.; Mutoh, Y.;
Kasama, T.; Saito, S. J. Org. Chem. 2015, 80, 7536–7546. (d)
Movsisyan, L. D.; Franz, M.; Hampel, F.; Thompson, A. L.;
Tykwinski, R. R.; Anderson, H. L. J. Am. Chem. Soc. 2016, 138,
1366–1376.
EXPERIMENTAL SECTION
General Experimental Procedure for the Active Metal
Template Synthesis of [3]- and [4]Rotaxanes
9
(4) (a) Aucagne, V.; Hänni, K. D.; Leigh, D. A.; Lusby, P. J.;
Walker, D. B. J. Am. Chem. Soc. 2006, 128, 2186–2187. (b) Berná,
J.; Crowley, J. D.; Goldup, S. M.; Hänni, K. D.; Lee, A.-L.; Leigh,
D. A. Angew. Chem., Int. Ed. 2007, 46, 5709–5713. (c) Crowley, J.
D.; Hänni, K. D.; Lee, A.-L.; Leigh, D. A. J. Am. Chem. Soc. 2007,
129, 12092–12093. (d) Goldup, S. M.; Leigh, D. A.; Lusby, P. J.;
McBurney, R. T.; Slawin, A. M. Z. Angew. Chem., Int. Ed. 2008,
47, 3381–3384. (e) Berná, J.; Goldup, S. M.; Lee, A.-L.; Leigh, D.
A.; Symes, M. D.; Teobaldi, G.; Zerbetto, F. Angew. Chem., Int.
Ed. 2008, 47, 4392–4396. (f) Goldup, S. M.; Leigh, D. A.; Long, T.;
McGonigal, P. R.; Symes, M. D.; Wu, J. J. Am. Chem. Soc. 2009,
131, 15924–15929. (g) Crowley, J. D.; Goldup, S. M.; Lee, A.-L.;
Leigh, D. A.; McBurney, R. T. Chem. Soc. Rev. 2009, 38, 1530–1541.
(h) Crowley, J. D.; Hänni, K. D.; Leigh, D. A.; Slawin, A. M. Z. J.
Am. Chem. Soc. 2010, 132, 5309–5314. (i) Crowley, J. D.; Goldup, S.
M.; Gowans, N. D.; Leigh, D. A.; Ronaldson, V. E.; Slawin, A. M.
Z. J. Am. Chem. Soc. 2010, 132, 6243–6248. (j) Goldup, S. M.;
Leigh, D. A.; McBurney, R. T.; McGonigal, P. R.; Plant, A. Chem.
Sci. 2010, 1, 383–386. (k) Lahlali, H.; Jobe, K.; Watkinson, M.;
Goldup, S. M. Angew. Chem., Int. Ed. 2011, 50, 4151–4155. (l)
Langton, M. J.; Matichak, J. D.; Thompson, A. L.; Anderson, H. L.
Chem. Sci. 2011, 2, 1897–1901. (m) Weisbach, N.; Baranová, Z.;
Gauthier, S.; Reibenspies, J. H.; Gladysz, J. A. Chem. Commun.
2012, 48, 7562–7564. (n) Lewandowski, B.; De Bo, G.; Ward, J.
W.; Papmeyer, M.; Kuschel, S.; Aldegunde, M. J.; Gramlich, P. M.
E.; Heckmann, D.; Goldup, S. M.; D’Souza, D. M.; Fernandes, A.
E.; Leigh, D. A. Science 2013, 339, 189–193. (o) Winn, J.;
Pinczewska, A.; Goldup, S. M. J. Am. Chem. Soc. 2013, 135, 13318–
13321. (p) Bordoli, R. J.; Goldup, S. M. J. Am. Chem. Soc. 2014, 136,
4817–4820. (q) Noor, A.; Moratti, S. C.; Crowley, J. D. Chem. Sci.
2014, 5, 4283–4290. (r) Noor, A.; Lo, W. K. C.; Moratti, S. C.;
Crowley, J. D. Chem. Commun. 2014, 50, 7044–7047. (s)
Baranová, Z.; Amini, H.; Bhuvanesh, N.; Gladysz, J. A.
Organometallics 2014, 33, 6746−6749. (t) De Bo, G.; Kuschel, S.;
Leigh, D. A.; Lewandowski, B.; Papmeyer, M.; Ward, J. W. J. Am.
Chem. Soc. 2014, 136, 5811–5814. (u) Hoekman, S.; Kitching, M.
O.; Leigh, D. A.; Papmeyer, M.; Roke, D. J. Am. Chem. Soc. 2015,
137, 7656–7659. (v) Barat, R.; Legigan, T.; Tranoy-Opalinski, I.;
Renoux, B.; Péraudeau, E.; Clarhaut, J.; Poinot, P.; Fernandes, A.
E.; Aucagne, V.; Leigh, D. A.; Papot, S. Chem. Sci. 2015, 6, 2608–
2613. (w) Franz, M.; Januszewski, J. A.; Wendinger, D.; Neiss, C.;
Movsisyan, L. D.; Hampel, F.; Anderson, H. L.; Görling, A.;
Tykwinski, R. R. Angew. Chem., Int. Ed. 2015, 54, 6645–6649. (x)
Neal, E. A.; Goldup, S. M. Chem. Sci. 2015, 6, 2398–2404.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
To a solution of the terpyridine macrocycle (1a or 1b, 1
equiv.) and NiCl2·6H2O (1 eq.) in NMP (2.5 mL) under an
inert atmosphere of nitrogen was added activated Zn powder
(20 equiv.) and the resulting suspension stirred vigorously
for 1 hour, resulting in a color change from greenish yellow to
deep purple. A solution of the stoppered bromide (2a, 2b or
2c, 20 equiv.) in THF (2.5 mL) was added and the resulting
mixture stirred at 60 °C for 18 h. The reaction mixture was
diluted with EtOAc (200 mL) and washed with a 17.5 %
aqueous solution of ammonia saturated with Na2EDTA (2 ×
50 mL), H2O (3 × 50 mL) and brine (50 mL). The organic
layer was dried over MgSO4, the solvent removed under re-
duced pressure and the resulting residue purified by size
exclusion chromatography (CH2Cl2 as eluent, see Supporting
Information Figure S1) to yield the corresponding [3]- and
[4]rotaxanes (4a-f and 5a-f, respectively) as colorless pow-
ders or clear films.
ASSOCIATED CONTENT
Supporting Information.
Synthetic procedures and characterization data. This materi-
al is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
* David.Leigh@manchester.ac.uk.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
We thank the EPSRC National Mass Spectrometry Centre
(Swansea, U.K.) for high-resolution mass spectrometry and
Miriam R. Wilson and Javier Jaramillo-Garcia for their assis-
tance with the graphics and molecular modeling.
REFERENCES
(5) (a) Saito, S.; Nakazono, K.; Takahashi, E. J. Org. Chem. 2006,
71, 7477–7480. (b) Saito, S.; Takahashi, E.; Wakatsuki, K.; Inoue,
K.; Orikasa, T.; Sakai, K.; Yamasaki, R.; Mutoh, Y.; Kasama, T. J.
Org. Chem. 2013, 78, 3553−3560.
(6) The rotaxane yields reported are with respect to the
macrocycle, the limiting reactant employed. The reactions
typically proceeded with >95% conversion of the alkyl bromide
building blocks, used in excess, to the combined homocoupled
axle products (non-interlocked thread and [3]- and [4]-
rotaxanes).
(1) Xue, M.; Yang, Y.; Chi, X.; Yan, X.; Huang, F. Chem. Rev. 2015,
115, 7398−7501.
(2) (a) Klotz, E. J. F.; Claridge, T. D. W.; Anderson, H. L. J. Am.
Chem. Soc. 2006, 128, 15374–15375. (b) Prikhod'ko, A. I.; Durola,
F.; Sauvage, J.-P. J. Am. Chem. Soc. 2008, 130, 448–449. (c)
Prikhod'ko, A. I.; Sauvage, J.-P. J. Am. Chem. Soc. 2009, 131, 6794–
6807. (d) Lee, C.-F.; Leigh, D. A.; Pritchard, R. G.; Schultz, D.;
Teat, S. J.; Timco, G. A.; Winpenny, R. E. P. Nature 2009, 458,
314–318. (e) Ackermann, D.; Schmidt, T. L.; Hannam, J. S.;
Purohit, C. S.; Heckel, A.; Famulok, M. Nat. Nanotechnol. 2010,
5
ACS Paragon Plus Environment