Organic Letters
Letter
(7) (a) Mahmoodi, N. O.; Tabatabaeian, K.; Kosari, M.; Zarrabi, S.
Chin. Chem. Lett. 2008, 19, 1431−1434. (b) Mahmoodi, N. O.;
Salehpour, N. Russ. J. Org. Chem. 2003, 39, 1760−1763. (c) Mahmoodi,
N. O.; Salehpour, M. J. Heterocycl. Chem. 2003, 40, 875−877.
(d) Mahmoodi, N. O.; Jazayri, M. Synth. Commun. 2001, 31, 1467−
1475. (e) Nikishin, G.; Svitanko, I.; Troyansky, E. J. Chem. Soc., Perkin
Trans. 2 1983, 595−601.
ACKNOWLEDGMENTS
■
We thank Professors T. Daniel Stack and Robert Waymouth
(Stanford University) for helpful discussions. This work has been
supported by the NSF under the CCI Center for Selective C−H
Functionalization (CHE-1205646), by generous contributions
from Novartis, and by the NIH under Award No.
T32GM007365. The content is solely the responsibility of the
authors and does not necessarily represent the official views of
the National Institutes of Health.
́
(8) (a) Concepcion, J.; Francisco, C. G.; Freire, R.; Hernandez, R.;
Salazar, J.; Suar
Am. Chem. Soc. 1965, 87, 2500−2502.
́
ez, E. J. Org. Chem. 1986, 51, 402−404. (b) Kochi, J. K. J.
(9) Reactions performed in deoxygenated solvents under N2 give
conversions and product ratios identical to those performed open to air.
(10) Nagarajan, A.; Porchezhiyan, V.; Srinivasaramanujam, S.;
Balasubramaniam, T. R. Ind. J. Chem., Section B 1985, 24, 1202−1203.
(11) Additional aliphatic- and aryl-derived substrates can be found in
REFERENCES
■
(1) For recent reviews highlighting outstanding challenges in C−H
hydroxylation, see: (a) Company, A.; Lloret, J.; Gom
Alkane C−H Oxygenation Catalyzed by Transition Metal Complexes.
In Alkane C−H Activation by Single Site Metal Catalysis; Perez, P., Ed;
Springer: Netherlands, 2012; pp 143−228. (b) Neufeldt, S.; Sanford, M.
Acc. Chem. Res. 2012, 45, 936−946. (c) White, M. C. Science 2012, 335,
807−809. (d) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011,
50, 3362−3374.
́
ez, L.; Costas, M.
(12) Little starting material is recovered from reactions with the
substrates shown in entries 9−11 (Table 2).
́
(13) (a) Adams, A.; Du Bois, J.; Malik, H. Org. Lett. 2015, 17, 6066−
6069. (b) McNeill, E.; Du Bois, J. J. Am. Chem. Soc. 2010, 132, 10202−
10204. (c) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J.
Org. Chem. 1981, 46, 3936−3938.
(2) For recent advances in C−H hydroxylation, see: (a) McCallum, M.
E.; Rasik, C. M.; Wood, J. L.; Brown, M. K. J. Am. Chem. Soc. 2016, 138,
2437−2442. (b) He, J.; Jiang, H.; Takise, R.; Zhu, R.-Y.; Chen, G.; Dai,
H.-X.; Dhar, T. G. M.; Shi, J.; Zhang, H.; Cheng, P. T. W.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2016, 55, 785−789. (c) See, Y. Y.; Herrmann, A.
T.; Aihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2015, 137, 13776−13779.
(d) Adams, A.; Du Bois, J. Chem. Sci. 2014, 5, 656−659. (e) Li, B.;
Driess, M.; Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 6586−6589.
(f) Rasik, C. M.; Brown, M. K. Angew. Chem., Int. Ed. 2014, 53, 14522−
14526. (g) Simmons, E.; Hartwig, J. F. Nature 2012, 483, 70−73.
(h) Bigi, M.; Reed, S.; White, M. C. J. Am. Chem. Soc. 2012, 134, 9721−
(14) Details for the synthesis of phyllodulcin and related natural
(15) For previous syntheses of phyllodulcin and related natural
products, see: (a) Mandal, S. K.; Roy, S. C. Tetrahedron 2008, 64,
11050−11057. (b) Uchida, K.; Fukuda, T.; Iwao, M. Tetrahedron 2007,
63, 7178−7186. (c) Tahara, N.; Fukuda, T.; Iwao, M. Tetrahedron Lett.
2004, 45, 5117−5120. (d) Guenes, M.; Speicher, A. Tetrahedron 2003,
59, 8799−8802. (e) Ramacciotti, A.; Fiaschi, R.; Napolitano, E. J. Org.
Chem. 1996, 61, 5371−5374. (f) Zehnter, R.; Gerlach, H. Tetrahedron:
Asymmetry 1995, 6, 2779−2786. (g) Takeuchi, N.; Nakano, T.; Goto,
K.; Tobinaga, S. Heterocycles 1993, 35, 289−297. (h) Arnoldi, A.;
Bassoli, A.; Merlini, L.; Ragg, E. Gazz. Chim. Ital. 1992, 122, 403−407.
(i) Napolitano, E.; Ramacciotti, A.; Fiaschi, R. Gazz. Chim. Ital. 1988,
118, 101−104. (k) Watanabe, M.; Sahara, M.; Kubo, M.; Furukawa, S.;
Billedeau, R.; Snieckus, V. J. Org. Chem. 1984, 49, 742−747.
(l) Takeuchi, N.; Ochi, K.; Murase, M.; Tobinaga, S. J. Chem. Soc.,
Chem. Commun. 1980, 593−594.
(16) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134,
14330−14333. By comparison, stirring 4, AgNO3, and K2S2O8 in
aqueous acetic acid at 50 °C gives ∼15% of lactone 6 with no detectable
amount of 5 and no recovered starting material. Under our Cu-catalyzed
conditions, no products of decarboxylation were identified in either
aqueous acetonitrile or aqueous acetic acid. The rate constant for
decarboxylation of alkyl carboxylates is estimated at 109 s−1, essentially
that of diffusion. The rate constant for decarboxylation of aryl
carboxylates is estimated at 106 s−1. See: Hilborn, J.; Pincock, J. J. Am.
Chem. Soc. 1991, 113, 2683−2686.
(17) (a) Li, X.; Che, X.; Chen, G.-H.; Zhang, J.; Yan, J.-L.; Zhang, Y.-F.;
Zhang, L.-S.; Hsu, C.-P.; Gao, Y. Q.; Shi, Z.-J. Org. Lett. 2016, 18, 1234−
1237. (b) Zhang, X.; Yang, H.; Tang, P. Org. Lett. 2015, 17, 5828−5831.
(18) For benzylic substrates, we cannot discount a mechanism
involving initial one-electron arene oxidation; see: (a) Walling, C.; El-
Taliawi, G.; Amarnath, K. J. Am. Chem. Soc. 1984, 106, 7573−7578.
(b) Walling, C.; Zhao, C.; El-Taliawi, G. J. Org. Chem. 1983, 48, 4910−
4914. (c) Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16,
27−32. (d) Neta, P.; Madhavan, V.; Zemel, H.; Fessenden, R. W. J. Am.
Chem. Soc. 1977, 99, 163−164. (e) Clerici, A.; Minisci, F.; Porta, O.
Tetrahedron Lett. 1974, 15, 4183−4184. (f) Ledwith, A.; Russell, P. J.
Chem. Soc., Perkin Trans. 2 1975, 1503−1508. (g) Ledwith, A.; Russell,
P. J. Chem. Soc., Perkin Trans. 2 1974, 582−591.
9726. (i) Company, A.; Gom
L., Jr.; Costas, M. J. Am. Chem. Soc. 2007, 129, 15766−15767.
(3) (a) Francisco, C. G.; Freire, R.; Herrera, A. J.; Perez-Martín, I.;
Suarez, E. Org. Lett. 2002, 4, 1959−1961. (b) Francisco, C. G.; Herrera,
A. J.; Suarez, E. J. Org. Chem. 2002, 67, 7439−7445. (c) Francisco, C. G.;
Freire, R.; Gonzalez, C. C.; Leon, E. I.; Riesco-Fagundo, C.; Suarez, E. J.
Org. Chem. 2001, 66, 1861−1866.
́
ez, L.; Guell, M.; Ribas, X.; Luis, J. M.; Que,
̈
́
́
́
́
́
́
(4) For the use of carboxyl radicals in sp3 C−H functionalization, see:
(a) Muraki, T.; Togo, H.; Yokoyama, M. J. Chem. Soc., Perkin Trans. 1
1999, 1713−1716. (b) Furuyama, S.; Togo, H. Synlett 2010, 2325−
2329. (c) Togo, H.; Muraki, T.; Yokoyama, M. Tetrahedron Lett. 1995,
36, 7089−7092. For syntheses of γ-lactones using sp3 C−H
functionalization, see: (d) Dohi, T.; Takenaga, N.; Goto, A.;
Maruyama, A.; Kita, Y. Org. Lett. 2007, 9, 3129−3132. (e) Khan, K.;
Hayat, S.; Zia-Ullah; Atta-Ur-Rahman; Choudhary, M.; Maharvi, G.;
Bayer, E. Synth. Commun. 2003, 33, 3435−3453. (f) Hayat, S.; Atta-Ur-
Rahman; Choudhary, M.; Khan, K.; Bayer, E. Tetrahedron Lett. 2001, 42,
1647−1649. (g) Giordano, C.; Belli, A.; Citterio, A. J. Org. Chem. 1980,
45, 345−346. (h) Barton, D. H. R.; Beckwith, A. L.J.; Goosen, A. J. Chem.
Soc. 1965, 181−190.
(5) For examples of directed oxidation reactions, see: (a) Ozawa, J.;
Tashiro, M.; Ni, J.; Oisaki, K.; Kanai, M. Chem. Sci. 2016, 7, 1904−1909.
(b) Hollister, K.; Conner, E.; Spell, M.; Deveaux, K.; Maneval, L.; Beal,
M.; Ragains, J. Angew. Chem., Int. Ed. 2015, 54, 7837−7841. (c) Dydio,
P.; Reek, J. Chem. Sci. 2014, 5, 2135−2145. (d) Fang, Z.; Breslow, R.
Org. Lett. 2006, 8, 251−254. (e) Das, S.; Incarvito, C.; Crabtree, R.;
Brudvig, G. Science 2006, 312, 1941−1943. (f) Yang, D.; Wong, M.-K.;
Wang, X.-C.; Tang, Y.-C. J. Am. Chem. Soc. 1998, 120, 6611−6612.
(6) The use of directing groups is well-documented in the palladium
literature. For representative examples, see: (g) Li, Q.; Zhang, S.-Y.; He,
G.; Nack, W.; Chen, G. Adv. Synth. Catal. 2014, 356, 1544−1548.
(h) Shan, G.; Yang, X.; Zong, Y.; Rao, Y. Angew. Chem., Int. Ed. 2013, 52,
13606−13610. (i) Yang, M.; Jiang, X.; Shi, W.-J.; Zhu, Q.-L.; Shi, Z.-J.
Org. Lett. 2013, 15, 690−693. (j) Rit, R.; Yadav, M.; Sahoo, A. Org. Lett.
(19) (a) Huie, R. E.; Clifton, C. L.; Kafafi, S. A. J. Phys. Chem. 1991, 95,
9336−9340. (b) Huie, R. E.; Clifton, C. L. J. Phys. Chem. 1990, 94,
8561−8567. (c) Huie, R. E.; Clifton, C. L. Int. J. Chem. Kinet. 1989, 21,
611−619.
(20) Oxidation of the methyl ester of 4-phenylbutyric acid 1 gives a 2:3
mixture of ketone and lactone products (50% conversion). See the
́
2012, 14, 3724−3727. (k) Novak, P.; Correa, A.; Gallardo-Donaire, J.;
Martin, R. Angew. Chem., Int. Ed. 2011, 50, 12236−12239. (l) Desai, L.;
Hull, K.; Sanford, M. J. Am. Chem. Soc. 2004, 126, 9542−9543.
D
Org. Lett. XXXX, XXX, XXX−XXX