Komissarova et al.
1948
Russ. Chem. Bull., Int. Ed., Vol. 69, No. 10, October, 2020
tion with a mass loss of 49.5%. The peak of the decomposition
rate in this temperature range was observed at 384 C (11% per
min). The further mass loss (11.5%) occurred in a range of
410—540 C and corresponded to the decomposition of the
carbonized residue.
Synthesis of compounds 2 and 3 (general procedure). A mix-
ture of pyromellitic dianhydride (0.28 g, 1.3 mmol), the corre-
sponding fluorine-substituted aniline (2.6 mmol), and anhydrous
DMF (10 mL) was refluxed for 12 h. The reaction mixture was
cooled down to room temperature and poured to water, and the
formed precipitate was filtered off, washed with water on the
filter, dried in air, and recrystallized from EtOH.
2,6-Bis(4-fluorophenyl)pyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-
tetraone (2). The yield of compound 2 as a light green crystalline
substance was 0.35 g (68%). The physicochemical and spectral
characteristics coincide with the previously published values.27,28
UV (DMSO), mах/nm (/L mol–1 cm–1): 267 (16 500).
2,6-Bis(2,3,5,6-tetrafluorophenyl)pyrrolo[3,4-f]isoindole-
1,3,5,7(2H,6H)-tetraone (3). The yield of compound 3 as a light
yellow crystalline substance was 0.46 g (70%), m.p. 274 C.
Found (%): C, 51.41; H, 0.95; N, 5.06. Calculated (%): C, 51.58;
H, 0.79; N, 5.47. 1Н NMR (DMSO-d6), : 8.11—8.20 (m, 2 H,
2 С6F4H); 8.38 (s, 1 H, PDI); 8.62 (s, 1 H, PDI). 13С NMR
(DMSO-d6), : 108.7, 116.7, 118.2, 119.8, 136.1, 136.8, 137.8,
162.5, 162.8, 165.8. UV (DMSO), mах/nm (/L mol–1 cm–1):
267 (12 950).
The thermal decomposition of the sample proceeds in three
stages. A mass loss of 2.8% of the sample weight occurs in an
endothermic range of 110—220 C along with the removal of the
solvent and low-molecular-weight impurities. A minor broad
endoeffect (H 2 J g–1) is observed at 218 C, after which
(in a range of 220—390 C) the sample endothermally de-
composed with a mass loss of 84.9%. The melting of the sample
(H 90 J g–1) is observed at 274 C in the DSC curve. At this
stage, a mass loss of 10% of the sample weight occurs at 295 C.
The maximum decomposition rate is observed at 350 C (16%
per min). The further mass loss in a range of 390—540 C cor-
responds to the decomposition of the carbonized residue (4%).
8. C. Wang, H. Dong, W. Hu, Y. Liu, D. Zhu, Chem. Rev., 2012,
112, 2208.
9. M. Al Kobaisi, S. V. Bhosale, K. Latham, A. M. Raynor,
S. V. Bhosale, Chem. Rev., 2016, 116, 11685.
10. A. Nowak-Król, K. Shoyama, M. Stolte, F. Würthner, Chem.
Commun., 2018, 54, 13763.
11. Organic Electronics II: More Materials and Applications, Vol. 2,
Ed. H. Klauk, Wiley-VCH, Weinheim, 2012.
12. A. S. Tayi, A. K. Shveyd, A. C.-H. Sue, J. M. Szarko, B. S.
Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L.
Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach,
J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F.
Stoddart, S. I. Stupp, Nature, 2012, 488, 485.
13. S. Kola, J. H. Kim, R. Ireland, M.-L. Yeh, K. Smith, W. Guo,
H. E. Katz, ACS Macro Lett., 2013, 2, 664.
14. Q. Zheng, J. Huang, A. Sarjeant, H. E. Katz, J. Am. Chem.
Soc., 2008, 130, 14410.
15. S. Kola, N. J. Tremblay, M.-L. Yeh, H. E. Katz, S. B.
Kirschner, D. H. Reich, ACS Macro Lett., 2012, 1, 136.
16. T.-F. Yang, S.-H. Huang, Y.-P. Chiu, B.-H. Chen, Y.-W.
Shih, Y.-C. Chang, J.-Y. Yao, Y.-J. Lee, M.-Y. Kuo, Chem.
Commun., 2015, 51, 1377.
17. M.-L. Yeh, S.-Y. Wang, J. F. M. Hardigree, V. Podzorov,
H. E. Katz, J. Mater. Chem. C, 2015, 3, 3029.
18. Z. Liu, G. Zhang, Z. Cai, X. Chen, H. Luo, Y. Li, J. Wang,
D. Zhang, Adv. Mater., 2014, 26, 6965.
19. S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc. Rev.,
2008, 37, 331.
20. Z. Li, Q. Yang, R. Chang, G. Ma, M. Chen, W. Zhang, Dyes
Pigm., 2011, 88, 307.
21. H. Cao, V. Chang, R. Hernandez, M. D. Heagy, J. Org. Chem.,
2005, 70, 4929.
22. S. S. Gunathilake, P. Huang, M. P. Bhatt, E. A. Rainbolt,
M. C. Stefan, M. C. Biewer, RSC Adv., 2014, 4, 41997.
23. S.-L. Suraru, F. Würthner, Angew. Chem., Int. Ed., 2014,
53, 7428.
24. S. V. Bhosale, C. H. Jani, S. J. Langford, Chem. Soc. Rev.,
2008, 37, 331.
25. H. Langhals, Heterocycles, 1995, 40, 477.
This study was financially supported by the Russian
Foundation for Basic Research (Project No. 18-33-
00323mol_a).
26. E. A. Komissarova, A. N. Vasyanin, V. E. Zhulanov, I. V.
Lunegov, E. V. Shklyaeva, G. G. Abashev, Russ. Chem. Bull.,
2019, 68, 1702.
27. W. A. Mosher, S. J. Chlystek, J. Heterocycl. Chem., 1972, 9, 319.
28. Y. Peng, L. Cao, Zh. Li, Appl. Surf. Sci., 2017, 420, 355.
29. T. F. Scholz, N. J. Somerville, G. M. Smith, US Pat. 2660579,
Chem. Abstrs, 1954, 48, 12184.
30. H. Nakayama,J. Nishida, N. Takada, H. Sato, Y. Yamashita,
Chem. Mater., 2012, 24, 671.
31. Y.-J. Huang, W.-C. Lo, S.-W. Liu, C.-H. Cheng, C.-T. Chen,
J.-K. Wang, Sol. Energy Mater Sol. Cells, 2013, 116, 153.
32. H. Meng, J. Zheng, A. J. Lovinger, B.-C. Wang, P. G. Van
Patten, Z. Bao, Chem. Mater., 2003, 15, 1778.
33. E. V. Verbitskiy, E. M. Cheprakova, J. O. Subbotina, A. V.
Schepochkin, P. A. Slepukhin, G. L. Rusinov, V. N. Cha-
rushin, O. N. Chupakhin, N. I. Makarova, A. V. Metelitsa,
V. I. Minkin, Dyes Pigm., 2014, 100, 201.
References
1. Organic Electronic Materials and Devices, Ed. S. Ogawa, Springer,
Tokyo—Heidelberg—New York—Dordrecht—London, 2016.
2. R. Mertens, The OLED Handbook. A Guide to OLED Tech-
nology, Industry & Market, edition 2019, Metalgras LTD, 2019.
3. Solution-Processable Components for Organic Electronic De-
vices, Eds J. Ulanski, B. Luszczynska, K. Matyjaszewski,
Wiley-VCH, Weinheim, 2019.
4. M. C. Petty, Organic and Molecular Electronics: from Principles
to Practice, 2nd ed., Wiley-VCH, Weinheim, 2019.
5. Handbook of Organic Materials for Electronic and Photonic
Devices, 2nd ed., Ed. O. Ostroverkova, Woodhead Publ.,
Cambridge, 2018.
6. E. V. Nosova, S. Achelle, G. N. Lipunova, V. N. Charushin,
O. N. Chupakhin, Russ. Chem. Rev., 2019, 88, 1128.
7. J. Langford, A. Insuasty, S. Carrera, L. Tang, C. Forsyth,
C. Hogan, C. McNei, ChemPlusChem, 2019, 84, 1638.
Received December 24, 2019;
in revised form January 29, 2020;
accepted March 2, 2020