a series of functionalized products could be synthesized from
readily available starting materials in one step. The preliminary
results suggested that the major reaction pathway might be a
combination of cationic dimerization and Ritter reaction for the
domino process, while a competitive radical procedure might be
involved also. Further studies towards a deeper insight into the
reaction mechanism, substrate scope and the stereoselective syn-
thesis are currently ongoing in our group.
Scheme 1 Products of the reaction carried out in the presence of
TEMPO.
Acknowledgements
We are grateful to the National Natural Science Foundation of
China (Grant 20972055, 21172080) and the Fundamental
Research Funds for the Central Universities (Grant
2011ZZ0005).
Notes and references
1 (a) G. A. Olah, Angew. Chem., Int. Ed., 2005, 44, 2636; (b) N. Armaroli
and V. Balzani, Angew. Chem., Int. Ed., 2007, 46, 52.
Scheme 2 Products of the reaction carried out in the presence of
2 For selected reviews, see: (a) T.-L. Ho, Tandem Organic Reactions, Wiley,
New York, 1992; (b) L. F. Tietze, G. Brasche and K. Gericke, Domino
Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2006;
(c) G. Balme, D. Bouyssi and N. Monteiro, in Multicomponent Reactions,
ed. J. Zhu and H. Bienaymé, Wiley-VCH, Weinheim, 2005, pp. 224–276;
(d) C. J. Chapman and C. G. Frost, Synthesis, 2007, 1; (e) D. E. Fogg and
E. N. dos Santos, Coord. Chem. Rev., 2004, 248, 2365; (f) K. C. Nicolaou
and J. S. Chen, Chem. Soc. Rev., 2009, 38, 2993; (g) K. C. Nicolaou, D.
J. Edmonds and P. G. Bulger, Angew. Chem., Int. Ed., 2006, 45, 7134;
(h) R. A. Bunce, Tetrahedron, 1995, 51, 13103; (i) K. C. Nicolaou,
T. Montagnon and S. A. Snyder, Chem. Commun., 2003, 551; ( j) B.
B. Touré and D. G. Hall, Chem. Rev., 2009, 109, 4439; (k) J.-C. Wasilke,
S. J. Obrey, R. T. Baker and G. C. Bazan, Chem. Rev., 2005, 105, 1001;
(l) L. F. Tietze, Chem. Rev., 1996, 96, 115.
hydroquinone.
3 For a review and selected examples, see: (a) T. V. RajanBabu, Chem. Rev.,
2003, 103, 2845; (b) F. Ciminale, L. Lopez, V. Paradiso and A. Nacci, Tet-
rahedron, 1996, 52, 13971; (c) R. Wolovsky and N. Maoz, J. Org. Chem.,
1973, 38, 4040; (d) J. C. Petropoulos and J. J. Fisher, J. Am. Chem. Soc.,
1958, 80, 1938; (e) J. Dai, J. Wu, G. Zhao and W.-M. Dai, Chem.–Eur. J.,
2011, 17, 8290; (f) H. Ma, Q. Sun, W. Li, J. Wang, Z. Zhang, Y. Yang and
Z. Lei, Tetrahedron Lett., 2011, 52, 1569; (g) C. Yi, R. Hua and H. Zeng,
Catal. Commun., 2008, 9, 85; (h) V. Nair, J. Mathew, P. P. Kanakamma, S.
B. Panicker, V. Sheeba, S. Zeena and G. K. Eigendorf, Tetrahedron Lett.,
1997, 38, 2191; (i) T. Kondo, D. Takagi, H. Tsujita, Y. Ura, K. Wada and
T. Mitsudo, Angew. Chem., Int. Ed., 2007, 46, 5958; ( j) C. Peppe, E.
S. Lang, F. M. de Andrade and L. B. de Castro, Synlett, 2004, 1723; (k) Y.-
J. Jiang, Y.-Q. Tu, E. Zhang, S.-Y. Zhang, K. Cao and L. Shi, Adv. Synth.
Catal., 2008, 350, 552; (l) V. Nair, R. Rajan and N. P. Rath, Org. Lett.,
2002, 4, 1575; (m) J. R. Cabrero-Antonino, A. Leyva-Pérez and A. Corma,
Adv. Synth. Catal., 2010, 352, 1571; (n) T. Tsuchimoto, S. Kamiyama,
R. Negoro, E. Shirakawa and Y. Kawakami, Chem. Commun., 2003, 852.
4 (a) J.-M. Huang, X.-X. Wang and Y. Dong, Angew. Chem., Int. Ed., 2011,
50, 924; (b) J.-M. Huang, H.-C. Luo, Z.-X. Chen, G.-C. Yang and T.-
P. Loh, Eur. J. Org. Chem., 2008, 295; (c) J.-M. Huang, J.-F. Zhang,
Y. Dong and W. Gong, J. Org. Chem., 2011, 76, 3511.
Scheme 3 Proposed mechanism for the iodine mediated/Brønsted
acid-catalyzed dimerization reaction.
along with the recovery of 15% of styrene 1a. Other than com-
pounds 4 and 5, some unidentified products were also observed
(Scheme 1). For the reaction in the presence of hydroquinone
(1 mmol), the desired product 3a was obtained in 20% yield
with 30% of styrene recovered. Meanwhile, 4 and some uniden-
tified compounds were also observed in the mixture (Scheme 2).
At the current stage, the precise reaction mechanism is not
clear yet. It was tentatively proposed that the major reaction
pathway might be initiated by an electrophilic halogenation reac-
tion at a carbon–carbon double bond,7 followed by a cationic
dimerization to produce 8, which was subsequently trapped by
the solvent acetonitrile in a manner analogous to the Ritter reac-
tion8 to furnish the desired dimer 3a (Scheme 3). In addition, the
radical process might not be neglected, based on the control
reaction results in Schemes 1 and 2.
5 CCDC 838337 (3a) contains the supplementary crystallographic data for
this paper†.
6 As determined by 1H NMR, the sample subjected to X-ray diffraction
study was the one of the major isomers, N-((1R*,3S*)-4-iodo-1,3-diphe-
nylbutyl)acetamide, see the ESI.†.
7 (a) A. Sakakura, A. Ukai and K. Ishihara, Nature, 2007, 445, 900;
(b) H. Ishibashi, K. Ishihara and H. Yamamoto, J. Am. Chem. Soc., 2004,
126, 11122; (c) R. A. Yoder and J. N. Johnston, Chem. Rev., 2005, 105,
4730; (d) A. X. Huang, Z. Xiong and E. J. Corey, J. Am. Chem. Soc.,
1999, 121, 9999.
8 (a) J. J. Ritter and P. P. Minieri, J. Am. Chem. Soc., 1948, 70, 4045; (b) J.
J. Ritter and J. Kalish, J. Am. Chem. Soc., 1948, 70, 4048; For a recent
review,: see: (c) A. Guérinot, S. Reymond and J. Cossy, Eur. J. Org.
Chem., 2012, 19.
Conclusions
We have developed a new iodine mediated and PTSA catalyzed
head-to-tail dimerization reaction of vinylarenes, through which
3612 | Org. Biomol. Chem., 2012, 10, 3610–3612
This journal is © The Royal Society of Chemistry 2012