7200
M. B. Andrus et al. / Tetrahedron Letters 42 (2001) 7197–7201
closed transition state. Partitioning to other isomers
would be seen if open arrangements with excess boron
triflate Lewis acid activation were operative. In sum-
mary a new asymmetric glycolate aldol process with
high yields and selectivities is reported. The ease of
synthesis, protection, and convenient auxiliary removal
through ester cleavage with lithium hydroxide or
DIBAL will lead to applications where differentially
protected syn diols are needed.
4. (a) Kobayashi, S.; Kawasuji, T. Tetrahedron Lett. 1994,
35, 3329; (b) Kobayashi, S.; Hayashi, T. J. Org. Chem.
1995, 60, 1098; (c) Gennari, C.; Vulpetti, A.; Pain, G.
Tetrahedron 1997, 53, 5909.
5. List, B.; Lerner, R. A.; Barbas, C. F. J. Am. Chem. Soc.
2000, 122, 2395.
6. (a) Abiko, A.; Liu, J.-F.; Masamune, S. J. Am. Chem.
Soc. 1997, 119, 2586; (b) Yoshimitsu, T.; Song, J. J.;
Wang, G.-Q.; Masamune, S. J. Org. Chem. 1997, 62,
8978; (c) Abiko, A.; Liu, J.-F.; Buske, D. C.; Moriyama,
S.; Masamune, S. J. Am. Chem. Soc. 1999, 121, 7168; (d)
Liu, J.-F.; Abiko, A.; Pei, Z.; Buske, D. C.; Masamune,
S. Tetrahedron Lett. 1998, 39, 1873.
Acknowledgements
7. Preparation of glycolate esters 3: A solution of alcohol 1
(10.0 g, 23.6 mmol), methoxyacetic acid (2.58 g, 2.2 mL,
28.67 mmol) and DMAP (0.288 g, 2.35 mmol) in CH2Cl2
(150 mL) was cooled to 0°C and treated with EDCI (5.43
g, 28.32 mmol). The reaction mixture was stirred at 0°C
for 2 h and then at 25°C for 6 h. The solution was
concentrated and the residue was dissolved in EtOAc
(750 mL) and water (150 mL). Organic layer was sepa-
rated, washed with satd NH4Cl (150 mL) and brine (100
mL). The organic layer was dried (Na2SO4) and concen-
trated. Purification of the concentrate by silica gel
column chromatography gave 3 (10.53 g, 90%) as a fine
white solid; Rf 0.40 (35% EtOAc/Hexanes); mp 87–89°C;
We wish to thank the National Institutes of Health
(GM57275) and the Brigham Young University Cancer
Center for funding and Dr. Bruce Jackson for mass
spectrometry.
References
1. (a) Gennari, C. In Comprehensive Organic Synthesis;
Trost, B. M.; Fleming, I., Eds.; Pergamon Press: New
York, 1991; Vol. 2, Chapter 2.4; (b) Cameron, J. C.;
Paterson, I. Org. React. 1997, 51, 1.
1
[h]D −3.6 (c 6.6, CHCl3); H NMR (300 MHz, CDCl3): l
2. syn-Versions: (a) Evans, D. A.; Bender, S. L.; Morris, J.
J. Am. Chem. Soc. 1988, 110, 2506; (b) Ku, T. W.;
Kondrad, K. H.; Gleason, J. G. J. Org. Chem. 1989, 54,
3487; (c) Andrus, M. B.; Schreiber, S. L. J. Am. Chem.
Soc. 1993, 115, 10420; (d) Evans, D. A.; Barrow, J. C.;
Leighton, J. L.; Robichaud, A. J.; Sefkow, M. J. Am.
Chem. Soc. 1994, 116, 12111–12112; (e) Rudge, A. J.;
Collins, I.; Holmes, A. B.; Baker, R. Angew. Chem. Int.
Ed. Engl. 1994, 33, 2320–2322; (f) Martin, S. F.; Dodge,
J. A.; Burgess, L. E.; Limberakis, C.; Hartmann, M.
Tetrahedron 1996, 52, 3229–3246; (g) Crimmins, M. T.;
Choy, A. L. J. Org. Chem. 1997, 62, 7548–7549; (h)
Nakamura, Y.; Hirata, M.; Kuwano, E.; Taniguchi, E.
Biosci. Biotechnol. Biochem. 1998, 62, 1550–1554; (i)
Crimmins, M. T.; Choy, A. L. J. Am. Chem. Soc. 1999,
121, 5653–5660; (j) Haight, D.; Birrell, H. C.; Cantello, B.
C. C.; Eggleston, D. S.; Haltiwanger, R. C.; Hindley, R.
M.; Ramaswany, A.; Stevens, N. C. Tetrahedron: Asym-
metry 1999, 10, 1353–1367; anti-Versions: (k) Danda, H.;
Hansen, M. M.; Heathcock, C. H. J. Org. Chem. 1990,
55, 173. anti-Glycolate: (l) Evans, D. A.; Kaldor, S. W.;
Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc.
1990, 112, 7001; (m) Evans, D. A.; Gage, J. R.; Leighton,
J. L.; Kim, A. S. J. Org. Chem. 1992, 57, 1961; (n) Evans,
D. A.; Weber, A. E. J. Am. Chem. Soc. 1986, 108, 6757;
(o) Saika, H.; Fruh, T.; Iwasaki, G.; Koizumi, S.; Mori,
I.; Hayakawa, K. Bioorg. Med. Chem. Lett. 1993, 3, 2129;
(p) Li, Z.; Wu, R.; Michalczyk, R.; Dunlap, R. B.;
Odom, J. D.; Silks, III, L. A. J. Am. Chem. Soc. 2000,
122, 386. Diastereoselective Ti glycolate: (q) Annunziata,
R.; Cinquini, M.; Cozzi, F.; Borgia, A. L. J. Org. Chem.
1992, 57, 6339.
7.35–7.17 (m, 8H), 6.96–6.93 (m, 2H), 6.87 (s, 2H), 5.93
(d, 1H, J=4.1 Hz), 4.64 (AB q, 2 H, J=17.3 Hz), 4.05
(dq, 1 H, J=4.1 and 6.8 Hz), 3.82 and 3.68 (AB q, 2 H,
J=16.3 Hz), 3.32 (s, 3H), 2.51 (s, 6H), 2.26 (s, 3H), 1.12
(d, 3 H, J=6.8 Hz); 13C NMR (75 MHz, CDCl3): l
168.90, 142.75, 140.33, 138.79, 138.10, 133.42, 132.33,
128.62, 128.58, 128.16, 127.44, 127.34, 126.11, 78.64,
69.63, 59.49, 56.74, 48.20, 23.16, 21.03, 12.75; HRMS
(FAB) calcd for C28H33NNaO5S (M++Na) 518.1977,
found 518.1990. Anal. calcd for C28H33NO5S: C, 67.85;
H, 6.71; N, 2.83. Found: C, 67.78; H, 6.82, N, 2.91%. The
benzyl and TBS glycolates were made in a similar
fashion.
8. (a) Brown, H. C.; Ganesan, K.; Dhar, R. K. J. Org.
Chem. 1993, 58, 147; (b) Brown, H. C.; Dhar, R. K.;
Ganesan, K.; Singaram, B. J. Org. Chem. 1992, 57, 499.
9. Brown, H. C.; Ganesan, K.; Dhar, R. K. J. Org. Chem.
1993, 58, 147.
10. General procedure: To a stirred solution of 3 (100 mg,
0.20 mmol) in CH2Cl2 (15 mL) cooled to −78°C was
added NEt3 (51.08 mg, 0.07 mL, 0.50 mmol) dropwise for
5 min. The reaction mixture was stirred for another 5 min
after the addition. A solution of c-Hex2BOTf (1.0 M in
hexane, 0.6 mL, 0.60 mmol) was added dropwise over
5–7 min and the reaction mixture was allowed to stir for
2–3 h at −78°C. Aldehyde (0.24–0.26 mmol) in CH2Cl2 (2
mL) was precooled to −78°C and added via cannula to
the enolate solution over 5 min. The reaction mixture was
stirred at −78°C for 2 h and at 0°C for 2 h. The reaction
was quenched by addition of pH 7.0 buffer (1 mL),
followed by MeOH (1 mL) and 30% H2O2 (0.5 mL) and
allowed to warm to rt. The reaction mixture was diluted
with CH2Cl2 (75 mL) and washed with aq. NaHCO3 (5
mL). The organic layer was separated and the aqueous
layer was back extracted with ether. The combined
organic extracts were treated with aq. HCl (10%, 10 mL)
3. (a) Andrus, M. B.; Soma Sekhar, B. B. V.; Meredith, E.
L.; Dalley, N. K. Org. Lett. 2000, 2, 3035–3037; (b)
Andrus, M. B.; Meredith, E. L.; Soma Sekhar, B. B. V.
Org. Lett. 2001, 3, 259–262.