4
Tetrahedron
Y. Mayumi, N. Zhao, S. Watanabe, M. Yokota and J. Ichikawa,
Angew. Chem., Int. Ed., 2013, 52, 7825; (e) P. J. Riss and F. I.
Aigbirhio, Chem. Commun., 2011, 47, 11873.
Acknowledgments
This work was supported by the National Basic Research Program of
China (2015CB931900, 2012CB215500), the National Natural
Science Foundation of China (21372246, 21421002), Shanghai
QMX program (13QH1402400) and the Chinese Academy of
Sciences.
16. S. Oae, Organic Sulfur Chemistry: Structure and Mechanism,
CRC, Florida, 1991.
17. (a) J. S. O'Donnell and A. L. Schwan, Tetrahedron Lett., 2003, 44,
6293; (b) A. L. Schwan, M. J. Verdu, S. P. Singh, J. S. O'Donnell
and A. N. Ahmadi, J. Org. Chem., 2009, 74, 6851; (c) S. P. Singh,
J. S. O'Donnell and A. L. Schwan, Org. Biomol. Chem., 2010, 8,
1712.
18. (a) H. Wasserma and W. Strehlow, Tetrahedron Lett., 1970, 795;
(b) E. Block, H. Bock, S. Mohmand, P. Rosmus and B. Solouki,
Angew. Chem., Int. Ed., 1976, 15, 383; (c) B. Zwanenburg, J.
Sulfur Chem., 2012, 34, 142.
19. The intramolecular nucleophilic attack of a pyridyl motif to an in-
situ generated sulfonyl iodide and subsequent fragmentation was
also observed in one of our previous works. Y. Zhao, B. Gao and
J. Hu, J. Am. Chem. Soc., 2012, 134, 5790.
References and notes
1. (a) J. B. Baudin, G. Hareau, S. A. Julia and O. Ruel, Tetrahedron
Lett., 1991, 32, 1175; (b) J. B. Baudin, G. Hareau, S. A. Julia and
O. Ruel, Bull. Soc. Chim. Fr., 1993, 130, 336; (c) J. B. Baudin, G.
Hareau, S. A. Julia, R. Lorne and O. Ruel, Bull. Soc. Chim. Fr.,
1993, 130, 856.
2. (a) P. R. Blakemore, W. J. Cole, P. J. Kocieński and A. Morley,
Synlett, 1998, 26; (b) P. J. Kocienski, A. Bell and P. R.
Blakemore, Synlett, 2000, 365.
3. (a) P. R. Blakemore, J. Chem. Soc., Perkin Trans. 1, 2002, 2563;
(b) C. Aïssa, Eur. J. Org. Chem., 2009, 1831; (c) R. Robiette and
J. Pospíšil, Eur. J. Org. Chem., 2013, 836.
4. For some applications of Julia-Kocienski olefination, see: (a) A.
Fettes and E. M. Carreira, J. Org. Chem., 2003, 68, 9274; (b) S. V.
Voitekhovich, P. N. Gaponik and G. I. Koldobskii, Russ. J. Org.
Chem., 2005, 41, 1565; (c) T. Takizawa, K. Watanabe, K. Narita,
T. Oguchi, H. Abe and T. Katoh, Chem. Commun., 2008, 1677;
(d) D. A. Evans, P. Nagorny, D. J. Reynolds and K. J. McRae,
Angew. Chem., Int. Ed., 2007, 46, 541; (e) H. Lei, J. Yan, J. Yu,
Y. Liu, Z. Wang, Z. Xu and T. Ye, Angew. Chem., Int. Ed., 2014,
53, 6533.
Supplementary Material
Electronic Supplementary Information (ESI) available:
Experimental details, characterization and copies of 1H, 19F
NMR, 13C NMR spectra and CCDC 1041858..
5. (a) L. A. Warren and S. Smiles, J. Chem. Soc., 1930, 1327; (b) J.
F. Burnett and R. E. Zahler, Chem. Rev., 1951, 49, 273; (c) T. N.
Gerasimova and E. F. Kolchina, J. Fluorine Chem., 1994, 66, 69;
(d) K. Plesniak, A. Zarecki and J. Wicha, in Sulfur-Mediated
Rearrangements II, ed. E. Schaumann, Springer, Berlin
Heidelberg, 2007, pp. 163-250.
6. M. Braun and W. Hild, Chem. Ber., 1986, 119, 2377.
7. N. Yamada, T. Koyasu, M. Sonami, M. Aoi, S. Tashiro, M. C.
Sheikh, Y. Ishida, W. Kawashima, T. Yoshimura and H. Morita,
Phosphorus, Sulfur Silicon Relat. Elem., 2010, 185, 1142.
8. Selected reviews on sulfenate (sulfenic acid) chemistry: (a) S.
Patai, The Chemistry of Sulphenic Acids and Their Derivatives.
Wiley, Chichester, 1990; (b) V. Gupta and K. S. Carroll, Biochim.
Biophys. Acta, 2014, 1840, 847.
9. Selected reviews on sulfinate (sulfinic acid) chemistry: (a) J. Aziz,
S. Messaoudi, M. Alami and A. Hamze, Org. Biomol. Chem.,
2014, 12, 9743; (b) C. Jacob, A. L. Holme and F. H. Fry, Org.
Biomol. Chem., 2004, 2, 1953; (c) W. E. Truce and A. M. Murphy,
Chem. Rev., 1951, 48, 69.
10. (a) Y. Zhao, W. Huang, L. Zhu and J. Hu, Org. Lett., 2010, 12,
1444; (b) B. Gao, Y. Zhao, M. Hu, C. Ni and J. Hu, Chem. Eur. J.,
2014, 20, 7803; (c) B. Gao, Y. Zhao, J. Hu and J. Hu, Org. Chem.
Front., 2015, 2, 163; (d) Y. Zhao, F. Jiang, J. Hu, J. Am. Chem.
Soc., 2015, DOI: 10.1021/jacs.5b02112.
11. For the synthesis of fluoroalkenes via Julia-Kocienski olefination,
see: (a) A. K. Ghosh and B. Zajc, Org. Lett., 2006, 8, 1553; (b) C.
Calata, J.-M. Catel, E. Pfund and T. Lequeux, Tetrahedron, 2009,
65, 3967; (c) L. Zhu, C. Ni, Y. Zhao and J. Hu, Tetrahedron,
2010, 66, 5089; (d) R. Kumar, P. Pradhan and B. Zajc, Chem.
Commun., 2011, 47, 3891; (e) D. O. Ayeni, S. K. Mandal and B.
Zajc, Tetrahedron Lett., 2013, 54, 6008;
12. See the supporting information for reaction condition
optimization.
13. (a) C. Ni, Y. Li and J. Hu, J. Org. Chem., 2006, 71, 6829; (b) C.
Ni, L. Zhang and J. Hu, J. Org. Chem., 2008, 73, 5699; (c) C. Ni
and J. Hu, Synlett, 2011, 70; (d) W. Zhang, C. Ni and J. Hu, Top.
Curr. Chem., 2012, 308, 25; (e) C. Ni, M. Hu and J. Hu, Chem.
Rev., 2015, 115, 765.
14. (a) K. Uneyama, Organofluorine Chemistry, Blackwell, Oxford,
2006; (b) P. Kirsch, Modern Fluoroorganic Chemistry: Synthesis,
Reactivity, Applications, 2nd Ed., Wiley-VCH, Weinheim, 2013.
15. For some applications of fluoroolefins on the basis of their
electrophilic properties, see: (a) B. Gao, Y. Zhao and J. Hu,
Angew. Chem., Int. Ed., 2015, 54, 638; (b) B. Gao, Y. Zhao, C. Ni
and J. Hu, Org. Lett., 2014, 16, 102; (c) Y. Xiong, X. Zhang, T.
Huang and S. Cao, J. Org. Chem., 2014, 79, 6395; (d) K. Fuchibe,