COMMUNICATIONS
spin system, dA 13.6, dX 32.7, JA,X
29.6 Hz; 13C{1H} NMR (CD2Cl2, 208C):
2
d 18.9 (dd, JC,P 19, 34 Hz; CH2), 32.7
4
3
(d, JC,P 5 Hz; CMe2), 41.6 (d, JC,P
2
3 Hz; CMe2), 119.6 (dd, JC,P 6, 12 Hz;
Cq arom.), 122.2 (d, JC,P 2 Hz; CH arom.),
128.6 (s; CH arom.), 133.1 (s; CH arom.).
5: A solution of 1 (0.33 g, 0.25 mmol), 4
(0.030 g, 0.025 mmol), and toluene (50 mL;
internal GC standard) in diethyl ether
(20 mL) was transferred to
a Fischer±
Porter pressure reactor, charged with eth-
ylene (3 bar) and heated at 608C for 24 h.
GC analysis of the resulting yellow solution
revealed the formation of styrene
(0.25 mmol), isobutene (0.20 mmol), tert-
butylbenzene (ca. 0.03 mmol), and minor
amounts of unidentified volatile products.
A
31P{1H} spectrum of this crude mixture
showed full conversion to (ca. 90%
5
purity). The solution was evaporated and
the residue extracted with petroleum ether
and filtered. Evaporation to dryness left
the crude product as an oily solid, which
was obtained as pale green crystals by
recrystallization from a petroleum ether/
Et2O (2:1) mixture. Yield: 0.18 g, 60%.
Elemental analysis (%) calcd for
C43H42BF24P3Pd: C 42.16, H 3.46; found:
C 42.21, H 3.27; 1H {31P} NMR (CD2Cl2,
3
208C): d 1.11 (t, JH,H 8.0 Hz, 3H;
CH3CH2), 1.41 (q, 2H; CH3CH2); 31P{1H}
NMR (CD2Cl2, 208C): d 18.6 (dd,
Scheme 2. Proposed reaction pathway for the overall transformation of 1 to 5.
2
2JP, P 386, 39 Hz), 16.1 (dd, JP, P 39,
2
26 Hz), 30.1 (dd, JP, P 386, 26 Hz);
2
13C{1H} NMR (CD2Cl2, 208C): d 11.9 (d, JC,P 87 Hz; CH2), 15.2 (m,
likely reaction pathway for the overall transformation. Like in
partially hidden by dmpe signals, CH3).
Received: May 23, 2001 [Z17164]
the Heck reaction, the phenethyl intermediate 6, undergoes
facile b-H elimination. In our base-free system, the [Pd H]
complex inserts another molecule of C2H4 and gives rise to a
[Pd Et] group which becomes stabilized by the coordination
of PMe3.[16] It is interesting to note here the ability of the
dmpe ligand to promote the olefin extrusion or insertion as
compared to the corresponding PMe3 system.[12] This might be
rationalized on the basis of the smaller steric hindrance posed
by the dmpe ligand to the planar transition state required for
the mentioned processes.[15, 17]
In summary, we have shown that the unstrained Calkyl Caryl
bond of the neophyl ligand becomes readily activated when
bonded to an electrophilic palladium center. Effecting this
thermal activation under ethylene allows the coupling of this
molecule with the phenyl fragment that results from the
[1] a) R. H. Crabtree, Chem. Rev. 1985, 85, 245; b) W. D. Jones, Nature
1993, 364, 676; c) D. Milstein, B. Rybtchinsky, Angew. Chem. 1999,
111, 918; Angew. Chem. Int. Ed. 1999, 38, 870; d) P. Steenwikel, R. A.
Gossage, G. van Koten, Chem. Eur. J. 1998, 4, 759.
[2] a) A. D. Horton, Organometallics 1996, 15, 2657; b) M. Etienne, R.
Mathieu, B. Donnadieu, J. Am. Chem. Soc. 1997, 119, 3218; c) K.
McNeill, R. A. Andersen, R. G. Bergman, J. Am. Chem. Soc. 1997,
119, 11244.
[3] a) D. M. Grove, G. van Koten, J. N. Louwne, J. G. Noltes, A. L. Spek,
H. J. C. Ubbels, J. Am. Chem. Soc. 1982, 104, 6609; b) J. Therjeiden, G.
van Koten, I. C. Vinke, A. L. Spek, J. Am. Chem. Soc. 1985, 107, 2891;
c) M. Albrecht, R. A. Gossage, A. L. Spek, G. van Koten. J. Am.
Chem. Soc. 1999, 121, 11898.
[4] a) M. Gozin, A. Weisman, J. Ben-David, D. Milstein, Nature 1993, 364,
699; b) M. Gozin, M. Aizenberg, S. Y. Liou, A. Weisman, Y. Ben-
David, D. Milstein, Nature 1994, 370, 42; c) M. Gandelman, A.
Vigalok, L. J. W. Shimon, D. Milstein, Organometallics 1997, 16, 3981.
[5] a) M. Catellani, M. C. Fagnola, Angew. Chem. 1994, 106, 2559; Angew.
Chem. Int. Ed. Engl. 1994, 33, 2421; b) M. Catellani, F. Frignani, A.
Rangoni, Angew. Chem. 1997, 109, 142; Angew. Chem. Int. Ed. Engl.
1997, 36, 119.
cleavage of the Calkyl
isobutene.
Caryl bond to produce styrene along with
Experimental Section
4: [H(OEt2)2]BAr4 (0.22 g, 0.25 mmol) was added to a cooled ( 308C)
solution of the metallacyclic complex 2[10] (0.97 g, 0.25 mmol) in CH2Cl2
(20 mL). After the cooling bath had been removed, the mixture was stirred
at room temperature for 30 min. The solvent was removed under vacuum
and the residue was extracted with Et2O (20 mL). The product was isolated
as colorless crystals by partial concentration of the solvent, addition of
some petroleum ether, and cooling to 208C overnight. Yield: 0.28 g,
91%. Elemental analysis (%) calcd for C48H41BF24P2Pd: C 46.01, H 3.30;
[6] a) G. Sini, S. A. Macgregor, O. Eisenstein, J. H. Teuben, Organo-
metallics 1994, 13, 1049; b) X. Yang, L. Jia, T. J. Marks, J. Am. Chem.
Soc. 1993, 115, 3392; c) X. Xinmin, C. L. Sterns, T. J. Marks, J. Am.
Chem. Soc. 1994, 116, 10015.
[7] a) J. F. Hartwig, R. G. Bergman, R. A. Andersen, Organometallics
1991, 10, 3344; b) C. M. Older, J. M. Stryker, J. Am. Chem. Soc. 2000,
122, 2784; c) M. Suzuki, Y. Takaya, T. Takemori, J. Am. Chem. Soc.
1994, 116, 10779.
1
3
found: C 46.08, H 3.29; H NMR (CD2Cl2, 208C): d 1.09 (dd, JH,P 5.5,
8.1 Hz, 2H; CH2), 1.37 (s, 6H; CMe2), 7.42 (m, 1H; CH arom.), 7.67 (m, 2H;
CH arom.), 7.73 (m, 2H; CH arom.); 31P{1H} NMR (CD2Cl2, 208C) AX
Angew. Chem. Int. Ed. 2001, 40, No. 19
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4019-3643 $ 17.50+.50/0
3643