for the production of the biaryl ether containing macro-
cycles.11,12 In connection with our ongoing project aimed at
the development of step-efficient high throughtput synthesis
of bioactive molecules,13 we envisaged access to the mac-
rocycles of generic structure 6 via a combined use of the
Ugi four-component reaction (Ugi 4CR)14,15 and intra-
molecular SNAr-based cycloetherification. The underlying
principle is shown in the Scheme 1. Thus, the Ugi reaction
established conditions, should cyclize to provide the desired
m,p-cyclophanes (6). A recent communication from Tempest
and Hulme’s group16 employing a similar strategy for the
preparation of heterocycles prompted us to report our own
results in this Letter.
The unknown ethyl R-(4′-fluoro-3′-nitro)phenethyl iso-
cyanoacetate (4a, R ) Et) was synthesized as shown in
Scheme 2. Alkylation of commercially available diethyl
Scheme 1. Two-Step Synthesis of Biaryl Ether Containing
Scheme 2
Macrocycles
formamidomalonate by 4-fluoro-3-nitrobenzyl bromide17
under standard conditions (NaH, DMF) provided 8 in 92%
yield. Partial saponification to the malonate mono ester
followed by heating in 1,4-dioxane18 gave the N-formyl
R-amino ester (9) which was dehydrated (POCl3, Et3N)19 to
the desired isonitrile (4a) in good overall yield.
With the isonitrile in hand, the Ugi 4CR was first
examined.20 At the outset, we were unaware of the compat-
ibility of an amine and a fluoronitro aromatic under Ugi’s
conditions. Indeed, amines and to a lesser extent alcohols,
which are the solvent of choice for the Ugi 4CR, are known
to be good nucleophiles for the intermolecular SNAr reac-
tion.21 Eventually, stirring a methanol solution of heptanal
(1a), butylamine (2a), 3-hydroxyphenylacetic acid (3a), and
4a did provide the desired dipeptide amide (5a), but the yield
was only moderate (34%).22 Therefore, the reaction condi-
tions were reexamined by varying the solvent, temperature,
and additives (Table 1). As shown in the table, the reaction
did not occur in DMF but proceeded smoothly in trifluoro-
ethanol to provide dipeptide 5a in 71% yield (entry 4).23 To
of an aldehyde (1), an amine (2), a ω-(3′-hydroxyphenyl)-
alkanecarboxylic acid (3), and an isonitrile (4) should give
the dipeptide amides (5) which, under our previously
(11) (a) Burgess, K. Lim, D.; Bois-Choussy, M.; Zhu, J. Tetrahedron
Lett. 1997, 38, 3345-3348. (b) Fotsch, C.; Kumaravel, G.; Sharma, S. K.;
Wu, A. D.; Gounarides, J. S.; Nirmala, N. R.; Petter, R. C. Bioorg. Med.
Chem. Lett. 1999, 9, 2125-2130. (c) Goldberg, M.; Smith, L., II; Yamayo,
N.; Kiselyov, A. S. Tetrahedron 1999, 55, 13887-13898. (d) Jefferson, E.
A.; Swayze, E. E. Tetrahedron Lett. 1999, 40, 7757-7760.
(12) TTN-mediated cycloetherification on solid support, see: (a) Naka-
mura, K.; Nishiya, H.; Nishiyama, S. Tetrahedron Lett. 2001, 42, 6311-
6313. (b) Yamamura, S.; Nishiyama, S. J. Synth. Org. Chem. Jpn. 1997,
55, 1029-1039.
(13) Zhao, G.; Sun, X.; Bienayme´, H.; Zhu. J. J. Am. Chem. Soc. 2001,
123, 6700-6701.
(14) (a) Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S.
D.; Keating, T. A. Acc. Chem. Res. 1996, 29, 123-131. (b) Do¨mling, A.;
Ugi, I. Angew. Chem., Int. Ed. 2000, 39, 3168-3210. (c) Bienayme´, H.;
Hulme, C.; Oddon, G.; Schmidtt, P. Chem. Eur. J. 2000, 6, 3321-3329.
(15) Selected examples of Ugi 4CR/post functionalization, see: (a)
Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 2574-
2583. (b) Hulme, C.; Peng, J.; Tang, S. Y.; Burns, C. J.; Morize, I.;
Labaudiniere, R. J. Org. Chem. 1998, 63, 8021-8023. (c) Fokas, D.; Ryan,
W. J.; Casebier, D. S.; Coffen, D. G. Tetrahedron Lett. 1998, 39, 2235-
2238. (d) Hulme, C.; Cherrier, M. P. Tetrahedron Lett. 1999, 40, 5295-
5299. (e) Bie´nayme´, H.; Bouzid, K. Tetrahedron Lett. 1999, 40, 2735-
2738. (f) Paulvannan, K. Tetrahedron Lett. 1999, 40, 1851-1854. (g)
Hulme, C.; Ma, L.; Cherrier, M.-P.; Romano, J. J.; Morton, G.; Duquenne,
C.; Salvino, J.; Labaudiniere, R. Tetrahedron Lett. 2000, 41, 1883-1887.
(h) Lee, D.; Sello, J. K.; Schreiber, S. L. Org. Lett. 2000, 2, 709-712. (i)
Beck, B.; Magnin-Lachaux, M.; Herdtweck, E.; Do¨mling, A. Org. Lett.
2001, 3, 2875-2878.
(16) Tempest, P.; Ma, V., Kelly, M. G.; Jones, W.; Hulme, C.
Tetrahedron Lett. 2001, 42, 4963-4968.
(17) Beugelmans, R.; Singh, G. P.; Bois-Choussy, M.; Chastanet, J.; Zhu,
J. J. Org. Chem. 1994, 59, 5535-5542.
(18) Cooper, M. S.; Seton, A. W.; Stevens, M. F.; Westwell, A. D.
Bioorg. Med. Chem. Lett. 1996, 6, 2613-1616.
(19) Obrecht, R.; Herrmann, R.; Ugi, I. Synthesis 1984, 400-402.
(20) Bowers, M. M.; Carroll, P.; Joullie´, M. M. J. Chem. Soc., Perkin
Trans. 1 1989, 857-865.
(21) Beugelmans, R.; Bigot, A.; Zhu, J. Tetrahedron Lett. 1994, 35,
5649-5652.
(22) The failure of the Ugi reaction in MeOH has been observed in other
cases, see, for example: Neyer, G.; Achatz, J.; Danzer, B.; Ugi, I.
Heterocycles 1990, 30, 863-869.
(23) (a) Bienayme´, H.; Bouzid, K. Angew. Chem., Int. Ed. 1998, 37,
2234-2237. (b) Park, S. J.; Keum, G.; Kang, S. B.; Koh, H. Y.; Kim, Y.
Tetrahedron Lett. 1998, 39, 7109-7112.
4080
Org. Lett., Vol. 3, No. 25, 2001