ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
A deep analysis of the RCs, TSs and PCs structures reveals that unfavorably constrained if a π-π stacking interaction appears
DOI: 10.1039/C6CC03539F
the π-π stacking interaction between the aromatic rings of the with the quinoline moiety of the catalyst.
catalysts and the substrate are important to stabilize and to This work was partially supported by Spanish Ministerio de
orient the two moieties in RCs. This explains that the Economía y Competitividad (ref. CTQ2015-66223-C2-1-P),
epoxidation of nitroalkenes 2h and 2i, having no aromatic Generalitat Valenciana (PROMETEOII/2014/022), and Polish
substituent, were not enantioselective. Nevertheless, the Ministry of Science and Higher Education ("Iuventus Plus"
presence of hydrogen bond interactions and the most project 0478/IP3/2015/73, 2015-2016). A.V.-A. thanks
favourable conformation of the catalyst appear to be the Generalitat Valenciana for a PhD grant (VALi+D Program). We
factor determining the relative energies of TSs and PCs that, in thank Serveis Centrals d’Instrumentació Científica and the
turn, determines the ratio of obtained enantiomers.
Servei d’Informàtica of Universitat Jaume I for technical
support and computational resources, respectively.
Notes and references
1
a) X. Guo, W. Chen, B. Chen, W. Huang, W. Qi, G. Zhang and
Y. Yu, Org. Lett., 2015, 17, 1157-1159; b) K. M. Weiß, S. Wei
and S. B. Tsogoeva, Org. Biomol. Chem., 2011, 9, 3457-3461;
c) L. A. Evans, H. Adams, C. G. Barber, L. Caggiano and R. F.
W. Jackson, Org. Biomol. Chem., 2007, 5, 3156-3163; d) Y. D.
Vankar, K. Shah, A. Bawa and S. P. Singh, Tetrahedron, 1991,
47, 8883-8906; e) H. Newman and R. B. Angier, Tetrahedron,
1970, 26, 825-836.
2
3
4
5
J. Agut, A. Vidal, S. Rodríguez and F. V. González, J. Org.
Chem., 2013, 78, 5717-5722.
A. Vidal-Albalat, S. Rodríguez and F. V. González, Org. Lett.,
2014, 16, 1752-1755.
S. Meninno, L. Napolitano and A. Lattanzi, Catal. Sci.
Technol., 2015, 5, 124-128.
a) A. Russo and A. Lattanzi, Adv. Synth. Cat., 2008, 350, 1991-
1995; b) D. Enders, L. Kramps and J. Zhu, Tetrahedron
Asymm., 1998, 9, 3959-3962; c) S. Julià, J. Guixer, J. Masana,
J. Rocas, S. Colonna, R. Annuziata and H. Molinari, J. Chem.
Soc. Perkin Trans. I, 1982, 1317-1324.
6
7
R. Helder, J. C. Hummelen, R. W. P. M. Laane, J. S. Wiering
and H. Wynberg, Tetrahedron Lett., 1976, 17, 1831-1834.
B. Lygo and P. G. Wainwright, Tetrahedron, 1999, 55, 6289-
6300.
8
9
E. J. Corey and F. Zhang, Org. Lett., 1999, 1, 1287-1290.
B. Lygo, S. D. Gardiner, M. C. McLeod and D. C. M. To, Org.
Biomol. Chem., 2007, 5, 2283-2290.
10 T. Ooi, D. Ohara, M. Tamura and K. Maruoka, J. Am. Chem.
Soc., 2004, 124, 6844-6845.
11 A. E. Nibbs, A. Baize, R. M. Herter and K. A. Scheidt, Org.
Lett., 2009, 11, 4010-4013.
12 M. W. Paixao, M. Nielsen, C. B. Jacobsen and K. A. Jorgensen,
Org. Biomol. Chem., 2008, 6, 3467-3470.
Fig.2 Optimized structures and relative energies of RC, TS and PC of the
epoxidation of nitroalkene 1a catalyzed by E1 starting from the most stable
conformations of the 1a–ClO-–E1 reactant complexes.
It is important to point out that the epoxidation of nitroalkene
1a catalyzed with E1 has been also studied from different
conformers (see Supporting Information). Any alternative
reaction path has been revealed as not only
thermodynamically but kinetically less favourable than the
reaction from A.II.1 displayed in Figure 2.
In summary, we report herein an enantioselective epoxidation
of nitroalkenes using cinchonine-derived E1 as a catalyst and
sodium hypochlorite as an oxidant. The process represents an
efficient preparation of enantiopure nitroepoxides with wide
potential for use in chemical synthesis. Our theoretical
analysis, based on DFT calculations, shows that the
enantioselectivity of the catalyst is dictated not so much by the
π-π stacking interaction established between the aromatic
rings of the catalyst and the substrate but by the relative
orientations of the three reactive species that are in fact
13 The crystal structures have been deposited at the CCDC and
allocated the deposition numbers: CCDC 1455126 and
1484486 for 2a and 2g, respectively. Also optical rotation of
2a resulted to be opposite to its enantiomer (see Supporting
information).
14 a) V. Barone and M. Cossi, J. Phys. Chem. A, 1998, 102, 1995-
2001; b) M. Cossi, N. Rega, G. Scalmani and V. Barone, J.
Comp. Chem., 2003, 24, 669-681.
15 M. J. Frisch, et al Gaussian 09, revision D.01; Gaussian, Inc.,
Wallingford CT, 2009.
16 S. Grimme, J. Comp. Chem., 2006, 27, 1787-1799.
17 R. Peverati and K.K. Baldridge, J. Chem. Theory Comput.,
2008, 4, 2030-2048.
18 a) G.K.S. Prakash, F. Wang, C. Ni, J. Shen, R. Haiges, A. K.
Yudin, T. Mathew and G. O. Olah, J. Am. Chem. Soc., 2011,
133, 9992-9995; b) G.K.S. Prakash, F. Wang, M. Rahm, Z.
Zhang, C. Ni, J. Shen and G. A. Olah, J. Am. Chem. Soc., 2014,
136, 10418-10431.
19 E. F. Martins and J. R. Pliego, Jr. ACS Catal. 2013, 3, 613-615.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx