10.1002/anie.202001725
Angewandte Chemie International Edition
COMMUNICATION
[4]
a) H. Li, P. J. Walsh, J. Am. Chem. Soc. 2004, 126, 6538; b) H. Li, P. J.
Walsh, J. Am. Chem. Soc. 2005, 127, 8355; c) D. B. Biradar, H.-M. Gau,
Org. Lett. 2009, 11, 499-502; d) A. V. R. Madduri, A. J. Minnaard, S. R.
Harutyunyan, Chem. Commun. 2012, 48, 1478–1480; e) Y. Huang, R.-
Z. Huang, Y. Zhao, J. Am. Chem. Soc. 2016, 138, 6571−6576.
H. Bao, X. Qi, U. K. Tambar, Synlett 2011, 1789-1792.
[5]
[6]
Recent review on catalytic asymmetric rearrangements: H. Wu, Q.
Wang, J. Zhu, Eur. J. Org. Chem. 2019, 1964–1980.
[7]
[8]
H. Bao, X. Qi, U. K. Tambar, J. Am. Chem. Soc. 2011, 133, 1206–1208.
a) S. Jautze, P. Seiler, R. Peters, Angew. Chem. Int. Ed. 2007, 46, 1260–
1264; b) S. Jautze, S. Diethelm, W. Frey, R. Peters, Organometallics
2009, 28, 2001–2004; c) M. Weber, J. E. M. N. Klein, B. Miehlich, W.
Frey, R. Peters, Organometallics 2013, 32, 5810-5817.
[9]
Selected applications: a) S. Jautze, R. Peters, Angew. Chem. Int. Ed.
2008, 47, 9284–9288; b) M. Weber, S. Jautze, W. Frey, R. Peters, J. Am.
Chem. Soc. 2010, 132, 12222–12225; c) S. H. Eitel, S. Jautze, W. Frey,
R. Peters, Chem. Sci. 2013, 4, 2218-2233; d) M. Weber, W. Frey, R.
Peters, Angew. Chem. Int. Ed. 2013, 52, 13223-13227; e) T. Hellmuth,
S. Rieckhoff, M. Weiss, K. Dorst, W. Frey, R. Peters, ACS Catal. 2014, 4,
1850-1858; f) M. Weiss, R. Peters, ACS Catal. 2015, 5, 310-316.
[10] a) M. E. Weiss, D. F. Fischer, Z.-q. Xin, S. Jautze, W. B. Schweizer, R.
Peters, Angew. Chem. Int. Ed. 2006, 45, 5694–5699; b) D. F. Fischer, A.
Barakat, Z.-q. Xin, M. E. Weiss, R. Peters, Chem. Eur. J. 2009, 15, 8722–
8741.
[11] a) C. Schrapel, W. Frey, D. Garnier, R. Peters, Chem. Eur. J. 2017, 23,
2448–2460; b) C. Schrapel, R. Peters, Angew. Chem. Int. Ed. 2015, 54,
10289–10293; ref. 9c.
Scheme 3. Synthesis of tertiary allylic alcohols employing the rearrangement
products.
[12] a) see ref. 10; b) Z.-q. Xin, D. F. Fischer, R. Peters, Synlett 2008, 1495–
1499; c) R. Peters, Z.-q. Xin, F. Maier, Chem. Asian J. 2010, 5, 1770–
1774; d) S. H. Eitel, M. Bauer, D. Schweinfurth, N. Deibel, B. Sarkar, H.
Kelm, H.-J. Krüger, W. Frey, R. Peters, J. Am. Chem. Soc. 2012, 134,
4683–4693; e) J. M. Bauer, W. Frey, R. Peters, Angew. Chem. Int. Ed.
2014, 53, 7634-7638.
In summary, we have reported a catalytic asymmetric
Meisenheimer rearrangement as an efficient entry to acyclic
tertiary allylic alcohols. This reaction is catalyzed by the robust
ferrocene based bispalladacycle catalyst [FBIP-Cl]2 and proceeds
in an stereospecific manner. It allows for high enantioselectivity
even for the formation of products in which the residues at the
generated stereocenter display a similar steric demand. From a
practical point of view, this method is also attractive, because no
catalyst activation and no catalytic additives are required.
Moreover low catalyst loadings were sufficient and the reaction
conditions are mild enough to tolerate even highly reactive
functional groups. The experimental data suggests an
intramolecular rearrangement pathway with a substrate saturation
of the palladacycle catalyst.
[13] Selected applications of these catalysts: a) M. Weber, R. Peters, J. Org.
Chem. 2012, 77, 10846–10855; b) T. Hellmuth, W. Frey, R. Peters,
Angew. Chem. Int. Ed. 2015, 54, 2788–2791.
[14] Initial studies on allyl imidate rearrangements: a) L. E. Overman, J. Am.
Chem. Soc. 1974, 96, 597-599; b) L. E. Overman, Angew. Chem. Int. Ed.
Engl. 1984, 23, 579-586; for the use of chiral cyclopalladated ferrocenes,
see e.g.: c) H. Nomura, C. J. Richards, Chem. Asian J. 2010, 5, 1726-
1740; d) M. Calter, T. K. Hollis, L. E. Overman, J. Ziller, G. G. Zipp, J.
Org. Chem. 1997, 62, 1449-1456; e) Y. Donde, L. E. Overman, J. Am.
Chem. Soc. 1999, 121, 2933-2934; f) L. E. Overman, C. E. Owen, M. M.
Pavan, C. J. Richards, Org. Lett. 2003, 5, 1809-1812; g) C. E. Anderson,
L. E. Overman, J. Am. Chem. Soc. 2003, 125, 12412-12413; h) C. E.
Anderson, Y. Donde, C. J. Douglas, L. E. Overman, J. Org. Chem. 2005,
70, 648-657; i) A. Moyano, M. Rosol, R. M. Moreno, C. López, M. A.
Maestro, Angew. Chem. Int. Ed. 2005, 44, 8065–8069; j) M. P. Watson,
L. E. Overman, R. G. Bergman, J. Am. Chem. Soc. 2007, 129, 5031-
5044; k) H. Nomura, C. J. Richards, Chem. Eur. J. 2007, 13, 10216-
10224; l) ref. 12).
Acknowledgements
This work was financially supported by the Deutsche
Forschungsgemeinschaft (DFG, PE 818/4-2). Xin Yu thanks the
China Scholarship Council (CSC) for a Ph.D. scholarship.
[15] M. Weiss, W. Frey, R. Peters, Organometallics 2012, 31, 6365–6372.
[16] R. Peters, D. F. Fischer, S. Jautze, Top. Organomet. Chem. 2011, 33,
139–175.
[17] See ref. 12e, 13b.
Keywords: asymmetric catalysis • bimetallic catalyst •
palladacycle • rearrangement • tertiary alcohols
[18] In combination with the above mentioned stereospecificity, it appears
reasonable that the reaction proceeds like already suggested in allyl
imidates (see ref. 10 and 14e) and carbamate rearrangements (see ref.
12e) via a face selective coordination of the C=C double bond to a PdII
[1]
A. Lumbroso, M. L. Cooke, B. Breit, Angew. Chem. 2013, 125, 1942–1986;
Angew. Chem. Int. Ed. 2013, 52, 1890–1932.
center and
formation.
a subsequent stereoselectivity determining C-X bond
[2]
[3]
Y.-L. Liu, X.-T. Lin, Adv. Synth. Catal. 2019, 361, 876–918.
a) Y. Li, M.-H. Xu, Org. Lett. 2014, 16, 2712–2715; b) T. Johnson, K.-L.
Choo, M. Lautens, Chem. Eur. J. 2014, 20, 14194–14197; c) W. Fu, M.
Nie, A. Wang, Z. Cao, W. Tang, Angew. Chem. 2015, 127, 2550–2554;
Angew. Chem. Int. Ed. 2015, 54, 2520–2524.
[19] A. G. Martinez, A. H. Hoveyda, J. Am. Chem. Soc. 2010, 132, 10634-
10637.
This article is protected by copyright. All rights reserved.