9030
J . Org. Chem. 2001, 66, 9030-9032
tested. Now, we report herein the extension of this
Ster eocon tr olled Ma n n ich Rea ction w ith
methodology to the use of enolizable imines only by
manipulating the enolate counterion and therefore with-
out the need to convert either the initial carbonyl
substrate or the azomethine reagent into a more reactive
derivative. This procedure represents a very straightfor-
ward and general access to chiral nonracemic R,â-
disubstituted â-aminoester derivatives with any kind of
substitution pattern at the alkyl chain.
En oliza ble Im in es Usin g
(S,S)-(+)-P seu d oep h ed r in e a s Ch ir a l
Au xilia r y. Asym m etr ic Syn th esis of
r,â-Disu bstitu ted â-Am in oester s a n d
â-La cta m s
J ose L. Vicario, Dolores Bad´ıa,* and Luisa Carrillo
Departamento de Quı´mica Orga´nica II, Facultad de
Ciencias, Universidad del Paı´s Vasco/ Euskal Herriko
Unibertsitatea, P.O. Box 644, E-48080 Bilbao, Spain
Resu lts a n d Discu ssion
When the lithium enolate of propionamide 1 was
reacted with the p-anisidine-based (E)-imine 2a 5 in the
presence of 4 equiv of LiCl (Scheme 1), as previously
reported,4a no addition product was obtained and the
starting propionamide was recovered unchanged together
with a complex mixture of products probably derived from
polymerization of the imine reagent (entry 1, Table 1).
The same results were obtained when the reaction was
performed with prior activation of the imine with a Lewis
acid like BF3‚OEt2 (entries 2-4, Table 1). Only in the
case of imine 2c, which is slightly less prone to racem-
ization, was obtained a small amount of the desired
addition product. However, when we submitted the
lithium enolate derived from propionamide 1 to a trans-
metalation step with 2 equiv of ZnCl2 prior to the addition
of the imine, the desired â-aminoamide adducts were
obtained in good yields after flash column chromatogra-
phy purification (entries 5-8, Table 1).6 The yield of the
addition reaction was significantly improved when an
excess of azomethine reagent was used, in the conditions
previously reported for nonenolizable imines.4a It should
be pointed out that the use of nonenolizable imine 2d (R
) Ph) yielded the desired adduct in comparable yield and
in the same absolute configuration in both newly created
chiral centers to that found when the lithium enolate of
1 was employed (entries 8 and 9, Table 1).4a
qopbaurm@lg.ehu.es
Received J uly 10, 2001
In tr od u ction
The Mannich reaction involving enolizable azomethine
compounds in most cases fails to give good results due
to the preference of the azomethine substrate to undergo
enolization rather than the desired nucleophilic addition.1
There are only a few procedures that overcome these
limitations, and in this context, modified derivatives of
either the enolate2 or the azomethyne reagent3 have been
employed.
On the other hand, the strategies employed to exert
stereocontrol in the newly created chiral centers involve
the introduction of the chiral information by incorporat-
ing chiral ligands present in the reaction medium in
either a stoichiometric or a catalytic way or by using
chiral imines or enolates.4 In regard to this last topic,
there are only a few known methods for diastereoselective
Mannich reactions employing chiral auxiliaries attached
to the enolate. This is in contrast with the parent aldol
reactions that have been extensively developed. We have
recently4a reported a very effective procedure for per-
forming stereocontrolled Mannich reactions using a chiral
enolate derived from (S,S)-(+)-pseudoephedrine propi-
onamide, in which several nonenolizable imines were
In all cases, the reaction proceeded with extremely high
simple (anti/syn ratio 3/3′ > 99:1) and facial (3/4 ratio >
99:1) diastereoselection, and amides 3a -d were obtained
as one diastereoisomer out of the four possible ones,
(1) Risch, N.; Arend, M. Stereoselective Synthesis (Houben-Weyl), Vol.
E21/ 3; Helmchen, G., Hoffmann, R. W., Mulzer, J ., Schaumann, E.,
Eds.; Thieme: Stuttgart, 1996; p 1833.
(2) (a) Schneider, C.; Reese, O. Angew. Chem., Int. Ed. 2000, 39,
2948. (b) List, B. J . Am. Chem. Soc. 2000, 122, 9336. (c) Glasson, S.
R.; Canet, J .-L.; Troin, Y. Tetrahedron Lett. 2000, 41, 9797. (d) Cozzi,
P. G.; di Simone, B.; Umani-Ronchi, A. Tetrahedron Lett. 1996, 37,
1691. (e) Ojima, I.; Habus, I.; Zhao, M.; Georg, G. I.; J ayasinghe, L. R.
J . Org. Chem. 1991, 56, 1681. (f) Liebeskind, L. S.; Welker, M. E.;
Goedken, V. J . Am. Chem. Soc. 1984, 106, 441. (g) Dubois, J .-E.;
Axiotis, G. Tetrahedron Lett. 1984, 25, 2143.
(3) (a) Cooke, J . W. B.; Berry, M. B.; Caine, D. M.; Cardwell, K. S.;
Cook, J . S.; Hodgson, A. J . Org. Chem. 2001, 66, 334. (b) Palomo, C.;
Oiarbide, M.; Gonza´lez-Rego, C.; Sharma, A. K.; Garc´ıa, J . M.;
Gonza´lez, A.; Landa, C.; Linden, A. Angew. Chem., Int. Ed. 2000, 39,
1063. (c) Saito, S.; Hatanaka, K.; Yamamoto, H. Org. Lett. 2000, 2,
1891. (d) D’Oca, M. G. M.; Pilli, R. A.; Vencato, I. Tetrahedron Lett.
2000, 41, 9709. (e) Kise, N.; Ueda, N. J . Org. Chem. 1999, 64, 7511. (f)
Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J . A. J . Org.
Chem. 1999, 64, 1278. (g) Kawakami, T.; Ohtake, H.; Arakawa, H.;
Okachi, T.; Imada, Y.; Murahashi, S.-I. Org. Lett. 1999, 1, 107. (h)
Higashiyama, K.; Kyo, H.; Takahashi, H. Synlett 1998, 489. (i) Cainelli,
G.; Panunzio, M.; Bandini, E.; Martelli, G.; Spunta, G. Tetrahedron
1996, 52, 1685. (j) Davis, F. A.; Reddy, R. T.; Teddy, R. E. J . Org. Chem.
1992, 57, 6387. (k) Andre´s, C.; Gonza´lez, A.; Pedrosa, R.; Pe´rez-Encabo,
A. Tetrahedron Lett. 1992, 33, 2895. (l) Brown, M. J .; Overman, L. E.
J . Org. Chem. 1991, 56, 1933. (m) Uyehara, T.; Suzuki, I.; Yamamoto,
Y. Tetrahedron Lett. 1989, 30, 4275. (n) Nagao, Y.; Dai, W.-M.; Ochiai,
M. Tetrahedron Lett. 1988, 29, 6133.
(4) (a) Vicario, J . L.; Bad´ıa, D.; Carrillo, L. Org. Lett. 2001, 3, 773
and references therein. See also: (b) Notz, W.; Sakthivel, K.; Bui, T.;
Zhong, G.; Barbas, C. F., III. Tetrahedron Lett. 2001, 42, 199. (c) Saito,
S.; Hatanaka, K.; Yamamoto, H. Tetrahedron 2001, 57, 875. (d)
McLaren, A. B.; Sweeney, J . B. Synlett 2000, 1625. (e) Ahn, J .-B.; Yun,
C.-S.; Kim, K. H.; Ha, D.-C. J . Org. Chem. 2000, 65, 9249. (f) Ishitani,
H.; Ueno, M.; Kobayashi, S. J . Am. Chem. Soc. 2000, 122, 8180. (g)
Enders, D.; Oberbo¨rsch, J .; Adam, J . Synlett 2000, 644. (h) Allef, P.;
Kunz, H. Tetrahedron: Asymmetry 2000, 11, 375. (i) Palomo, C.;
Aizpurua, J . M.; Gracenea, J . J . J . Org. Chem. 1999, 64, 1693. (j) Fujii,
A.; Hagiwara, E.; Sodeoka, M. J . Am. Chem. Soc. 1999, 121, 5450. (k)
Viso, A.; De la Pradilla, R.; Garc´ıa, A.; Alonso, M.; Guerrero-Strachan,
L.; Fonseca, I. Synlett 1999, 1543.
(5) The preference for the E configuration in imines in which the
CdN bond is conjugated with one or more aromatic rings has already
been described; see: Hine, J .; Yeh, C. Y. J . Am. Chem. Soc. 1967, 89,
2669.
(6) For some examples of Mannich-type reactions using zinc(II)
enolates, see: (a) Comins, D. L.; Kuethe, J . T.; Hong, H.; Lakner, F.
J .; Concolino, T. E.; Rheingold, A. L. J . Am. Chem. Soc. 1999, 121,
2651. (b) van Maanen, H. L.; Kleijn, H.; J astrzebski, J . T. B. H.;
Verweij, J .; Kieboom, A. P. G.; van Koten, G. J . Org. Chem. 1995, 60,
4331. (c) van Maanen, H. L.; Kleijn, H.; J astrzebski, J . T. B. H.; van
Koten, G. Bull. Soc. Chim. Fr. 1995, 132, 86. (d) van der Steen, H. H.;
Kleijn, H.; Britovsek, G. J . P.; J astrzebski, J . T. B. H.; van Koten, G.
J . Org. Chem. 1992, 57, 3906.
10.1021/jo010697m CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/29/2001