9542
T. Shibuguchi et al. / Tetrahedron Letters 43 (2002) 9539–9543
Table 4. Catalytic asymmetric phase-transfer Michael additions
Entry
Electrophile
Product
Time (h)
Yield (%)a
Ee (%)b
1
2
3
Methyl acrylate
Ethyl acrylate
Butyl acrylate
7
15
16
20
26
22
86
88
79
75(S)
82(S)
78(S)
a Isolated yield.
b Determined by HPLC analysis.
In conclusion, we designed a new versatile asymmetric
two-center catalyst and constructed a catalyst library.
More than 40 catalysts 1 were easily synthesized from
3. (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc.
1997, 119, 12414; (b) Corey, E. J.; Noe, M. C.; Xu, F.
Tetrahedron Lett. 1998, 39, 5347; (c) Corey, E. J.; Bo, Y.;
Busch-Peterson, J. J. Am. Chem. Soc. 1998, 120, 13000.
4. (a) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997,
38, 8595; (b) Lygo, B.; Crosby, J.; Peterson, J. A. Tetra-
hedron Lett. 1999, 40, 1385; (c) Lygo, B. Tetrahedron
Lett. 1999, 40, 1389; (d) Lygo, B.; Crosby, J.; Peterson, J.
A. Tetrahedron Lett. 1999, 40, 8671.
5. For selected examples of other important contributions in
this field, see: (a) Arai, S.; Shioiri, T. Tetrahedron Lett.
1998, 39, 2145; (b) Arai, S.; Hamaguchi, S.; Shioiri, T.
Tetrahedron Lett. 1998, 39, 2997; (c) Arai, S.; Tsuge, H.;
Shioiri, T. Tetrahedron Lett. 1998, 39, 7563; (d) Arai, S.;
Shioiri, T. Tetrahedron 2002, 58, 1407; (d) Arai, S.;
Tsuge, H.; Oku, M.; Miura, M.; Shioiri, T. Tetrahedron
2002, 58, 1623 and references cited therein.
6. (a) Ooi, T.; Kaneda, M.; Maruoka, K. J. Am. Chem. Soc.
1999, 121, 6519; (b) Ooi, T.; Takeuchi, M.; Kaneda, M.;
Maruoka, K. Tetrahedron Lett. 2000, 41, 8339; (c) Ooi,
T.; Takeuchi, M.; Kaneda, M.; Maruoka, K. J. Am.
Chem. Soc. 2000, 122, 5228; (d) Ooi, T.; Takeuchi, M.;
Ohara, D.; Maruoka, K. Synlett 2001, 7, 1185; (e)
Belokon, Y. N.; Kochetkov, K. A.; Churkina, T. D.;
Ikonnikov, N. S.; Larionov, O. V.; Harutyunyan, S. R.;
Vyskocil, S.; North, M.; Kagan, H. B. Angew. Chem., Int.
Ed. Engl. 2001, 40, 1948; (f) Kita, T.; Georgieva, A.;
Hashimoto, Y.; Nakata, T.; Nagasawa, K. Angew.
Chem., Int. Ed. Engl. 2002, 41, 2832.
diethyl L
-tartrate16 and applied in phase-transfer alkyla-
tions and Michael additions. Starting from the initial
catalyst 1aa, the enantiomeric excess of both alkylated
products and Michael adducts was greatly improved
(up to 93% ee and 82% ee, respectively) by screening
the ketal moiety and the aromatic moiety in the catalyst
1. These findings validate the usefulness of catalyst
tuning for optimization. Moreover, comparing absolute
configurations of alkylated products and Michael
adducts led us to consider the possibility that the
two-center catalysts act as bifunctional catalysts in
Michael additions. Further studies on catalyst tuning,
reaction mechanisms, application to other phase-trans-
fer reactions by rational design of the catalyst based on
mechanistic studies, and the development of new types
of bifunctional organocatalysts are currently in
progress.
Acknowledgements
This work was supported by RFTF and Encourage-
ment of Young Scientists (A) of Japan Society for the
Promotion of Science.
7. For recent reviews, see: (a) Shibasaki, M. Stimulating
Concepts in Chemistry; Vo¨gtle, F.; Stoddart, J. F.;
Shibasaki, M., Eds.; John Wiley & Sons: New York,
2000; (b) Shibasaki, M.; Yoshikawa, N. Chem. Rev. 2002,
102, 2187.
References
1. For general reviews of asymmetric PTC, see: (a) O’Don-
nell, M. J. Catalytic Asymmetric Synthesis, 2nd ed.;
Ojima, I., Ed.; John Wiley & Sons: New York, 2000; (b)
Shioiri, T.; Arai, S. Stimulating Concepts in Chemistry;
Vo¨gtle, F.; Stoddart, J. F.; Shibasaki, M., Eds.; John
Wiley & Sons: New York, 2000; (c) Nelson, A. Angew.
Chem., Int. Ed. Engl. 1999, 38, 1583.
2. (a) O’Donnell, M. J.; Benett, W. D.; Wu, S. J. Am. Chem.
Soc. 1989, 111, 2353; (b) Lipkowitz, K. B.; Cavanaugh,
M. W.; Baker, B.; O’Donnell, M. J. J. Org. Chem. 1991,
56, 5181; (c) O’Donnell, M. J.; Wu, S. Tetrahedron:
Asymmetry 1992, 3, 591; (d) O’Donnell, M. J.; Wu, S.;
Huffman, J. C. Tetrahedron 1994, 50, 4507; (e) O’Don-
nell, M. J.; Delgado, F.; Hostettller, C.; Schwesinger, R.
Tetrahedron Lett. 1998, 39, 8775; (f) O’Donnell, M. J.;
Delgado, F.; Pottorf, R. Tetrahedron 1999, 55, 6347.
8. Computational simulation was performed with Cerius2
(Accelrys Inc., San Diego, CA and Cambridge, UK). The
conformation depicted in Fig. 1 was obtained using a
random conformational search, the so-called Monte
Carlo method, followed by a molecular mechanics mini-
mization calculation (Universal Force Field v.1.02, see:
Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard,
W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024).
9. For example, (Sigma-Aldrich Co., St. Louis, MO),
L
-tar-
taric acid: 100 g, 4100 yen (ca. 33 US$), diethyl
L
-tar-
trate: 100 g, 8600 yen (ca. 70 US$), quinine: 100 g, 78000
yen (ca. 640 US$) and (R)-BINOL: 100 g, 783000 yen
(ca. 6420 US$).