SCHEME 1. In d iu m -Med ia ted Red u ctive
Elim in a tion of Ha loh yd r in Com p ou n d s
In d iu m -Med ia ted Red u ctive Elim in a tion of
Ha loh yd r in s
Sangwon Cho,†,‡ Soyeon Kang,†,‡ Gyochang Keum,†
Soon Bang Kang,† So-Yeop Han,‡ and Youseung Kim*,†
Biochemicals Research Center,
Korea Institute of Science and Technology, P.O. Box 131,
Cheongryang, Seoul 130-650, Korea, and
Department of Chemistry and Division of Molecular Life
Sciences, Ewha Womans University, Seoul 120-750, Korea
TABLE 1. Rea ction of 1-Br om o-2-in d a n ol u n d er Va r iou s
Con d ition sa
yosekim@kist.re.kr
Received August 7, 2002
Abstr a ct: Olefin formation has been successfully carried
out by reductive elimination reactions of halohydrins with
Pd(PPh3)4/In/InCl3 in aqueous media.
yield of
yield of
product debrominated
entry
solvent
reagent
4b (%) compd 5b (%)
1
2
3
4
THF/H2O
THF/H2O
THF/H2O
THF/H2O
Pd(PPh3)4/In/InCl3
Pd(PPh3)4/In
Pd(PPh3)4/InCl3
Pd(PPh3)4/InI
65
0
28
The carbon-carbon double bond is a basic structural
unit in organic chemistry, particularly in complex natural
products with interesting biological activities, and nu-
merous reports have been published on the syntheses and
chemical reactivities of alkenes.1 Among many reported
methods, the 1,2-elimination reaction is one of the most
effective for forming alkenes.2 Halohydrins are good
alkene precursors for the reductive 1,2-elimination be-
NRd
43
25
23
18
5
MeOH/H2O Pd(PPh3)4/In/InCl3
6
DMF/H2O
THF/H2O
THF/H2O
Pd(PPh3)4/In/InCl3
Pd(PPh3)4/Zn/InCl3
Pd(PPh3)4/Sn/InCl3
7c
8c
NRd
a
Reactions were carried out on a 0.5 mmol scale at rt; halohy-
drin:Pd(PPh3)4:metal:InCl3 ) 1:0.02:2:0.5. b GC yield. c 50 °C. No
reaction.
d
cause they can be prepared by diverse methods.3
A
number of reductive elimination reactions of halohydrin
compounds proceed under various metal-mediated condi-
tions.4 However, these reactions are limited by their poor
stereoselectivities, acidic conditions, or application of
heat. Therefore, an investigation of the mild and stereo-
selective methodology for carbon-carbon double bond
formation should be valuable.
Indium-mediated organic reactions in aqueous media
have become one of the most challenging areas in organic
synthesis due to the environmental benefits and favor-
able effects of indium metal on chemical transforma-
tions.5 Among many indium-mediated organic reactions,
the allylation reaction of carbonyl compounds with allylic
halides to afford the homoallylic alcohols is probably the
most widely used one in organic synthesis.6
In the course of our extensive studies on utilizing
indium metal, we reported carbon-carbon bond forma-
tion reactions7 and reductive dehalogenation reactions.8
To further explore the potentials of indium metal, we
studied the roles of indium metal on the reductive 1,2-
elimination. The use of indium metal in reductive elimi-
nation reactions has not been studied as widely as other
transformations. Herein we report that halohydrin com-
pounds undergo reductive elimination to produce the
corresponding olefins when treated with indium metal
in the presence of Pd(PPh3)4 catalyst and InCl3 in
aqueous media (Scheme 1).
* To whom correspondence should be addressed. Fax: (82)2-958-
5189.
† Korea Institute of Science and Technology.
‡ Ewha Womans University.
(1) (a) The Chemistry of Alkenes; Patai, S., Ed.; Interscience: New
York, 1968; Vol. 2. (b) Shen, Y. Acc. Chem. Res. 1998, 31, 584.
(2) (a) Krebs, A.; Swienty-Busch, J . In Comprehensive Organic
Synthesis; Trost, B. M., Flemming, I., Winterfeldt, E., Eds.; Perga-
mon: Oxford, 1991; Vol. 6, pp 949-973. (b) Kocienski, P. In Compre-
hensive Organic Synthesis; Trost, B. M., Flemming, I., Winterfeldt, E.,
Eds.; Pergamon: Oxford, 1991; Vol. 6, pp 975-1010.
Thus, halohydrins were reacted with indium powder
(200 mol %) and InCl3 (50 mol %) in the presence of
tetrakis(triphenylphospine)palladium(0) (2 mol %) in a
mixture of THF and H2O (1:1, v/v) at ambient tempera-
(3) (a) House, H. O. J . Am. Chem. Soc. 1955, 77, 3070. (b) Guindon,
Y.; Therien, M.; Girard, Y.; Yoakim, C. J . Org. Chem. 1987, 52, 1680.
(c) Chini, M.; Crotti, P.; Gardelli, C.; Macchia, F. Tetrahedron 1992,
48, 3805. (d) Cabon, O.; Buisson, D.; Larcheveque, M.; Azerad, R.
Tetrahedron: Asymmetry 1995, 6, 2199. (e) Choi, O. K.; Cho, B. T.
Tetrahedron: Asymmetry 2001, 12, 903. (f) Araki, S.; Hirashita, T.;
Shimizu, H.; Yamamura, H.; Kawai, M.; Butsugan, Y. Tetrahedron
Lett. 1996, 37, 8417. (g) Andrus, M. B.; Poehlein, B. W. Tetrahedron
Lett. 2000, 41, 1013. (h) Knapp, S.; Kukkola. P. J .; Sharma, S.;
Pietranico, S. Tetrahedron Lett. 1987, 28, 5399. (i) Meth-Cohn, S.;
Moore, C.; Taljaard, H. C. J . Chem. Soc., Perkin Trans. 1 1988, 2663.
(4) (a) Williams, D. R.; Nishitani, K.; Bennett, W.; Sit, S. Y.
Tetrahedron Lett. 1981, 22, 3745. (b) Fukuyama, T.; Chen, X. J . Am.
Chem. Soc. 1994, 116, 3125. (c) Concellon, J . M.; Bernad, P. L.; Perez-
Andres, J . A. Angew. Chem., Int. Ed. 1999, 38, 2384.
(5) (a) Li, C.-J .; Chan, T.-H. Organic Reactions in Aqueous Media;
J ohn Wiley & Sons: New York, 1997. (b) Cintas, P. Synlett 1995, 1087.
(c) Hashmi, A. S. K. J . Prakt. Chem. 1998, 340, 84.
(6) Li, C.-J .; Chan, T.-H. Tetrahedron 1999, 55, 11149.
(7) (a) Lim, H. J .; Keum, G.; Kang, S. B.; Chung, B. Y.; Kim, Y.
Tetrahedron Lett. 1998, 39, 4367. (b) Lim, H. J .; Keum, G.; Kang, S.
B.; Chung, B. Y.; Kim, Y. Tetrahedron Lett. 1999, 40, 1547. (c) Lim,
H. J .; Keum, G.; Kang, S. B.; Chung, B. Y.; Kim, Y. Bull. Korean Chem.
Soc. 2000, 21, 809. (d) Kang, S.; J ang, T.-S.; Keum, G.; Kang, S. B.;
Han, S.-Y.; Kim, Y. Org. Lett. 2000, 2, 3615.
(8) (a) Chae, H.; Cho, S.; Keum, G.; Kang, S. B.; Pae, A. N.; Kim, Y.
Tetrahedron Lett. 2000, 41, 3899. (b) Park, L.; Keum, G.; Kang, S. B.;
Kim, K. S.; Kim, Y. J . Chem. Soc., Perkin Trans. 1 2000, 4462.
10.1021/jo0262964 CCC: $25.00 © 2003 American Chemical Society
Published on Web 12/10/2002
180
J . Org. Chem. 2003, 68, 180-182